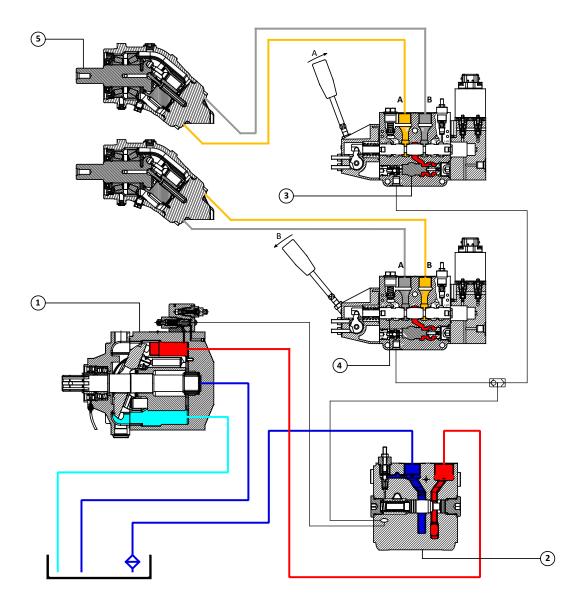


General description	
PIU soleinoid LS unloading valves	
PDS flow control spool	
PDR spool centered set	
Modules and code numbers	
Shock and suction valves	
PDL Electrical LSA/B unloading	
PDLD Proportional Electrical LSA/B unloading	
PEAC131 Proportional closed loop spool control input signal 0,5 Udc	
PEAC132 Proportional closed loop spool control input signal control 0 ÷ 10 V	
PEAC136 Proportional closed loop spool control input signal control 4 ÷ 20 mA	
PEAC031 Proportional open loop spool control input signal 0,5 Udc	
PEAC032 Proportional open loop spool control input signal control 0 ÷ 10 V	
PEAC036 Proportional open loop spool control input signal control 4 ÷ 20 mA	
PEAD3 Proportional open loop spool control input signal PWM and ON-OFF	
PEAP3 Proportional open loop spool control input signal PWM and ON-OFF	
Overall dimension drawing	
Product selection chart	
Composition form	

PDV315 is a hydraulic proportional directional valve, designed to offers a wide range controls options and flexibility.

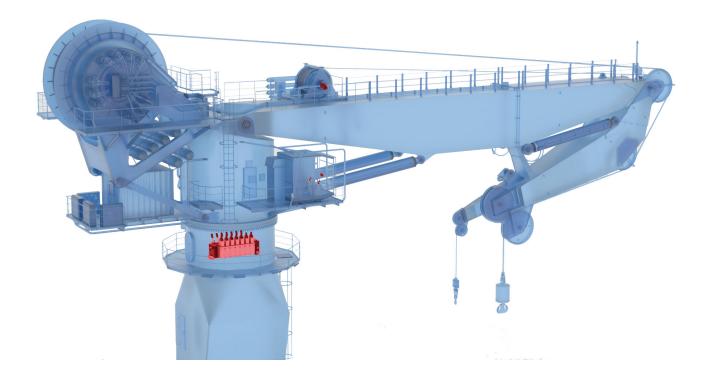

The **PDV315** modular system enables bankable groups to perform many individual tasks, to meeting and exceeding the changing control needs of the off-highway machines of today, and well into the future to maximize the efficiency, controllability and reliability of vehicles.

PDV315 main features:

- Load sensing up-stream pressure compensation
- High flow/low pressure drop capability
- Integrated pump unloading system
- Integrated cut-off pump system
- Open/closed centre shifting system
- Precise metering capabilities
- LSA-LSB electrical unloading
- LSA-LSB electrical working pressure remote control
- Constant flow regardless of pressure
- Working sections symmetrical flow
- Optional priority inlet for steering or different priority functions
- Optional dual hydraulic pilot and electrohydraulic control
- ATEX and IECEx configuration
- CAN-Bus comunication
- EMC immunity ensures high safety with regard to electro-magnetic compatibility

High pressure port of **PPV** piston pump (1) supply the closed centre inlet section of **PDV315** proportional valve (2) which in turn feeds the down-stream working sections.

The **PDS** spool neutral position ④ unload the LS pump signal to tank, so that the swashplate angle is towards the minimum displacement and pressure in stand-by setting.


The spool position determines the flow demands (speed rotation) of the two HPM motors (5).

The PDS main spool compares the pressure drop before and after the spool notches (differential pressure Δp), and therefore, the pump flow remain constant.

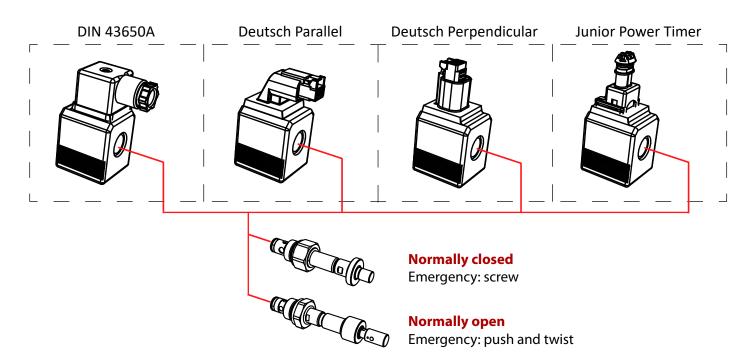
If the differential pressure increase, the pump swashplate is swivelled back towards the minimum displacement, and if the differential pressure decrease, the swashplate angle increase towards the max flow displacement until balance is restored within the valve.

Actuators load determines the working pressure, and the built-in pressure compensator 3 enable simultaneously function regardless of different working pressure.

- 1. PPV90 load sensing piston pump
- 2. Pump slitter gear box
- 3. I/O controller PHSI7101008
- 4. PDV74/6 closed centre inlet
- 5. Electronic double axis joystick PEJD
- **6**. Graphic display PDHI703000
- 7. PPM40 piston motors

The hydraulic features listed in this chart, are typical measured data obtained by using mineral based hydraulic oil according to DIN 51524 with a viscosity of 21 mm²/sec [102 SUS] and a temperature of 50 °C [122 °F]

	PDI inlet section, P po	ort	600 l/min (max)	158 US gal/min
Oil flow rate	PDIM - Mid inlet secti	PDIM - Mid inlet section, P port		158 US gal/min
	A , B port with pressu	re compensator	500 l/min	132 US gal/min
		Pressure relief valve setting	400 bar	5800 psi
	P port	Working pressure	370 bar	5370 psi
Max. pressure	A, B port		370 bar	5370 psi
	Ty port, directly to ta	nk		
		Static	25 bar	363 psi
	T port	Dynamic	35 bar	508 psi
	Max. pilot pressure oil	supply	30 bar	435 psi
	Recommended		30 ÷ 65 °C	86 °F ÷ 149 °F
Oil temperature	Min		-30 °C	-22 °F
		Max		194 °F
	Ambient temperature		-30 ÷ 60 °C	-22 ÷ 140 °F
	Ор	Operating range		65 ÷ 347 SUS
Oil viscosity		Min	4 mm ² /sec	39 SUS
		Max	460 mm ² /sec	2128 SUS
	Standard		9 mm	0,35 in
Spool stroke	Flow control proporti	ional range	7,5 mm	0,3 in
	Pressure control prop	ootional range	7,5 mm	0,3 in
Deed hand speed	Flow control	Flow control		0,06 in
Daed band spool	Pressure control	Pressure control		0,06 in
Max internal leakage A/B port		A/B T without shock valves	100 cm³/min	6,1 in ³ /min
	osi] and 21 mm ² /sec	A/B T with shock valves	115 cm³/min	7 in³/min
Filtration	Max. contamination:	class 9 according to NAS 1638 (20	/18/15 according to IS	50 4406)


	PDH module - hydraulic control	
Dilot prossure	Spool start movement	4 bar / 58 psi
Pilot pressure	Spool end stroke	15 bar / 218 psi
Max. pilot pressure 30 bar /		30 bar / 436 psi

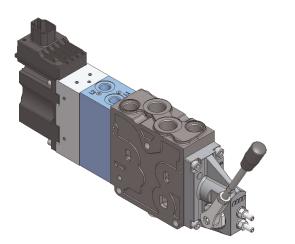
PDV74 internal filters, mesh 100 μm

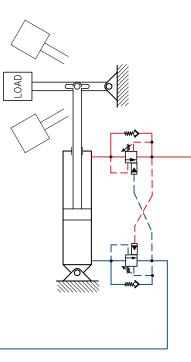
Mineral oil hydraulic fluid: according to DIN 51524 and 51525 or ISO 6743/4 PDV74 can also be used with phosphate esters (HFDR), water-glycol (HFC) or water oil (HFB) mixes, subject to our Technical Dept. approval

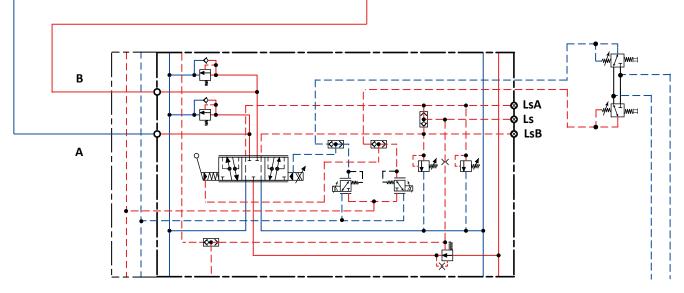
PDV315 Proportional Valve **PIU** solenoid LS unloading valves

Code numbers PIU solenoid LS unloading valve codes			
Cartridge valve type	Connector type	12 Vdc	24 Vdc
Normally closed	DIN 43650A	PIU0C023200	PIU0C013200
Emergency: screw 人 ²	Deutsch Parallel	PIU0C021200	PIU0C011200
	Deutsch Perpendicular	PIU0C022200	PIU0C012200
	Junior Power Timer	PIU0C024200	PIU0C014200
Normally open Emergency: push and twist	DIN 43650A	PIU0A023100	PIU0A013100
χ^2	Deutsch Parallel	PIU0A021100	PIU0A011100
	Deutsch Perpendicular	PIU0A022100	PIU0A012100
	Junior Power Timer	PIU0A024100	PIU0A014100

Plug for LS unloading cavity			
Plug cavity	Hydraulic scheme	Code numbers	
		PIP1000000	


Max. operating pressure	350 bar		
Max. internal leakage	350 bar, 46 mm²/sec 1 cm³/min		
max pressure drop	0	< 1,5 bar	
Expected life - 350 bar, 0,5 Hz (1s on / 1s off)	10.000.00	00 cycles
Response time for LS press	sure relief	< 28	0ms
	Recommended	30 ÷ 0	60 °C
Oil temperature	Min.	-30	°C
	Max.	90	°C
Ambient temperatu	ire	-30 ÷	60 °C
Max. coil surface tempe	Max. coil surface temperature 160 °C		٥°C
	Operating range	10 ÷ 90 cSt	
Oil viscosity	Min.	4 mm²/sec	
	Max.	460 mm²/sec	
	Connector DIN 43650	IPe	55
Degree of enclosure		IPe	57
	Connector Deutsch DT04-2p	IP69K integi	rated to coil
Rated voltage		12 Vdc	24 Vdc
Supply voltage		10,6 ÷ 14,6 Vdc	20,4 ÷ 28,6 Vdc
Working temperature		-30 ÷ 80 °C	
Maximum coil surface temperature		175 °C	
Heat insulation		Class H	(180 °C)
Resistance	Resistance		29,9 Ω
Current consumption	on	1,6 A	0,8 A
Power consumption	n	19	W


Description	
	PDE14000000



PDZ is a small HIC body that can be matched with any kind of PDV74 working section PDW, to get hydraulic and electro-hydraulic spool control

PDZ overrall dimensions	For open loop spool control	For closed loop spool control
	PDZ70000000 1/4″ BSPP - 12 mm deep	PDZ 1/4″ BSPP - 12 mm deep
	PDZ [7⁄16 in-20 UNF-2B - 0,47 in deep]	PDZ [7⁄i6 in-20 UNF-2B - 0,47 in deep]

PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc

PEAC131 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control. The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC131 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

Active fault monitoring

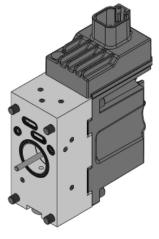
When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

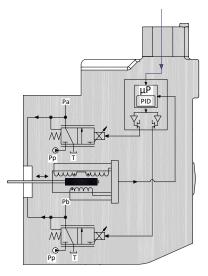
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

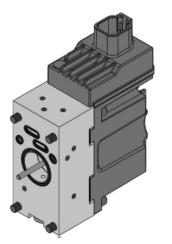
Passive fault monitoring

When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.

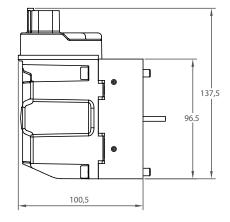

When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin

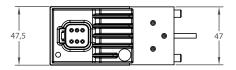

This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

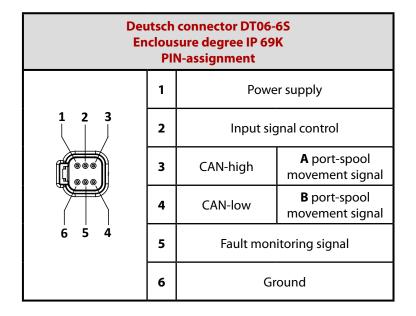
In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

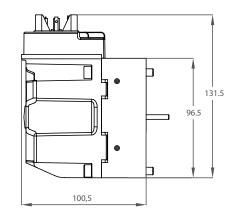

The use of PEAC131 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.

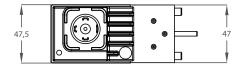
When the PEAC131 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

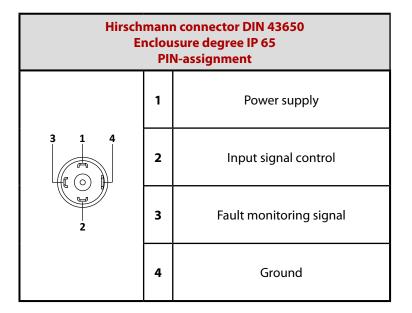

PEAC131 is defined by:

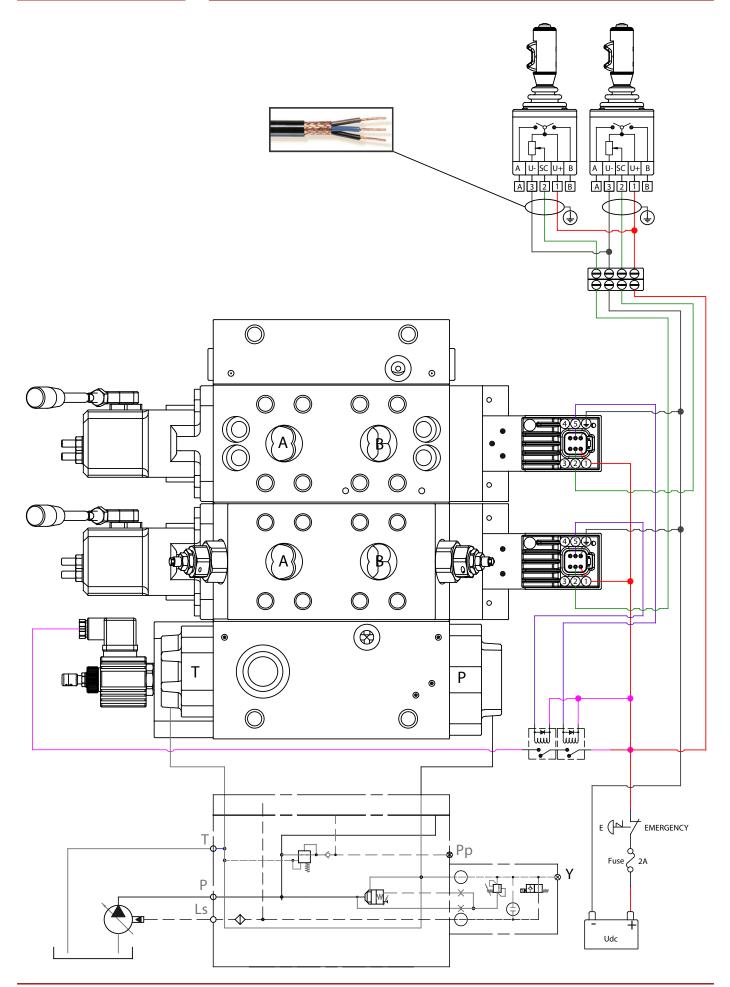

- Inductive transducer with resolution < 12 µm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power


PEAC131 Technical data		
Rated supply voltage	10 ÷ 30 Vdc	
Max ripple	5%	
Signal control	0,5 Udc	
Range control signal	0,25 Udc to 0,75 Udc	
Neutral spool position	0,5 Udc	
Max threshold signal, A port	1 V	
Max threshold signal, B port	1 V	
Max current signal @ rated voltage	48 mA	
Input capacitor	100 ηF	
Signal control impedance	25 kΩ	
Power consumption	8,7 W	
Heat insulation	Class H (180°C)	
Duty cycle	ED 100%	
Max current consumption	650 mA	
Current consumption in neutral position	80 mA	
Coil impedance @ 20°C	8,9 Ω	
Dither frequency	50-200 Hz	
Recommended frequency	100 Hz	
Enclouser degree (Electrical wiring excepted)	IP 66 - IP 67 - IP 69K	
Weight cast iron body	1,8 kg	
Weight aluminium body	1,3 kg	

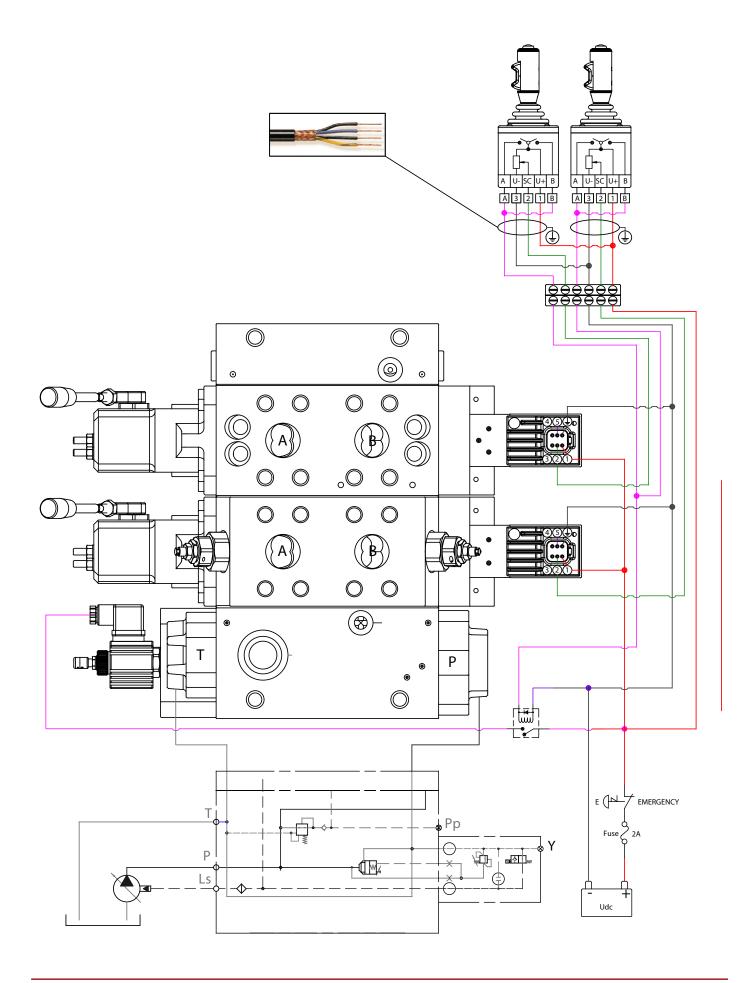

Foult monitoring sustant	Max current on safety output (pin 5)	50 mA
Fault monitoring system	Reaction time a fault	500 ms
Max current output signal	for spool direction moviment	50 mA
	From neutral position to max spool travel	110 - 140 ms
Reaction time (constant voltage)	From max spool travel to neutral	70 - 90 ms
	From neutral position to max spool travel	130 - 170 ms
Reaction time (neutral switch)	From max spool travel to neutral	70 - 90 ms



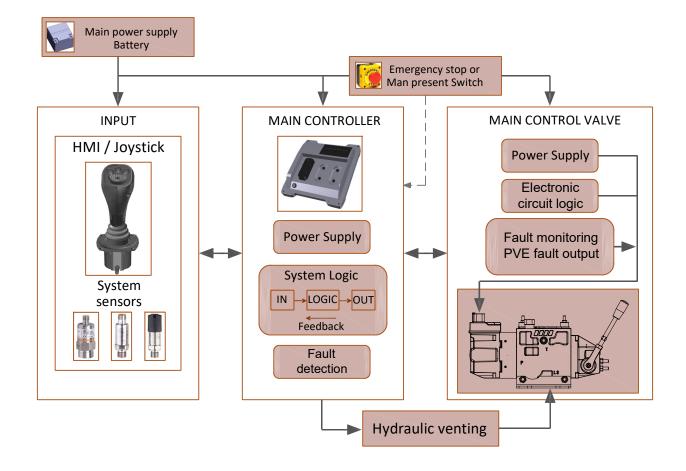




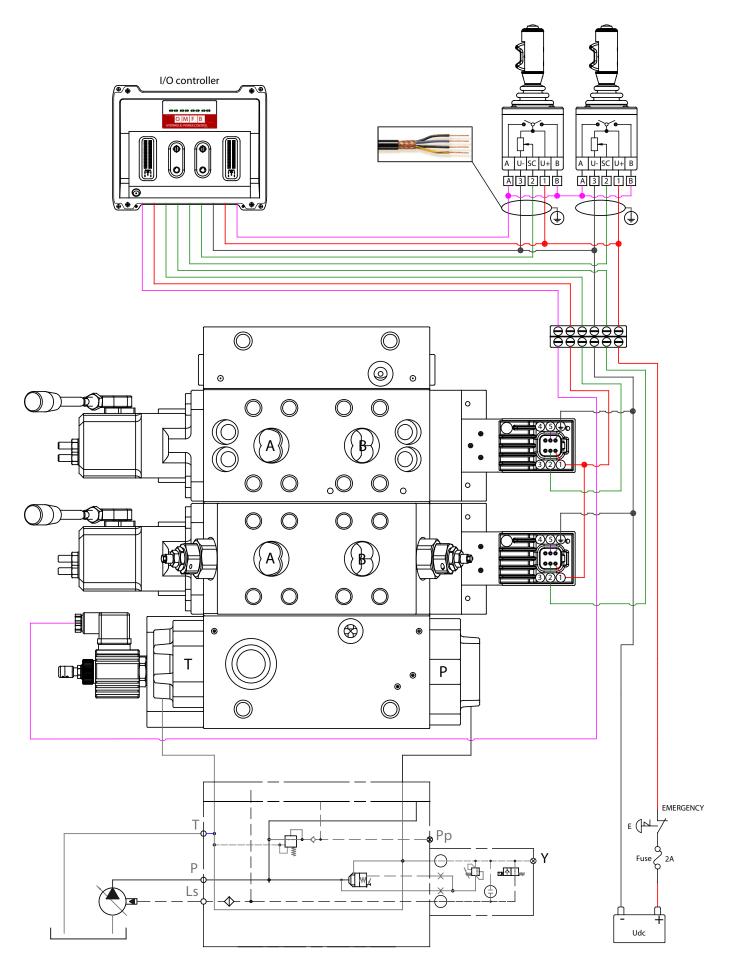
	Code numbers			
Connector version	Active	Active version Passive version		version
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch DT06-6S	PEAC0181000	PEAC1181000	PEAC0171000	PEAC1171000
DIN 43650	PEAC0181200	PEAC1181200	PEAC0171200	PEAC1171200

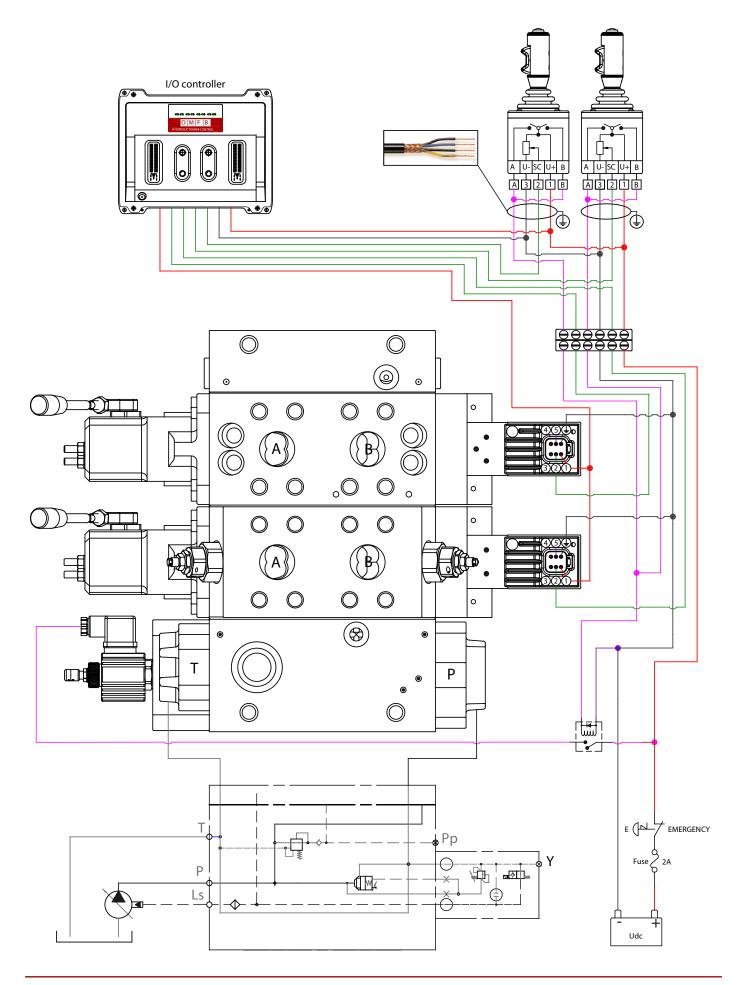


PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc



PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc





PDV315 - PEAC131 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc

PDV315 - PEAC131 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc

PDV315 - PEAC132 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V

PEAC132 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control. The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC132 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

Active fault monitoring

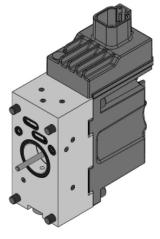
When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

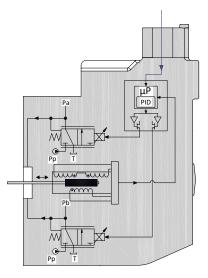
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

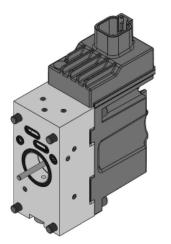
Passive fault monitoring

When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.

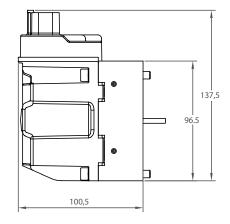

When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin

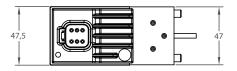

This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

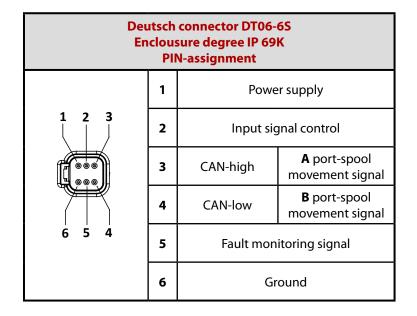
In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

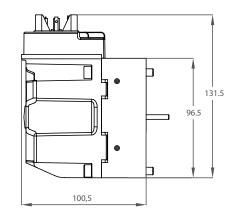

The use of PEAC132 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.

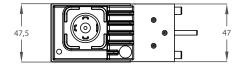
When the PEAC132 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

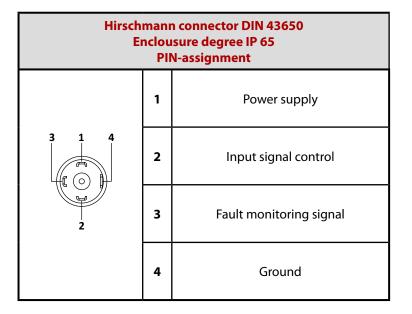

PEAC132 is defined by:

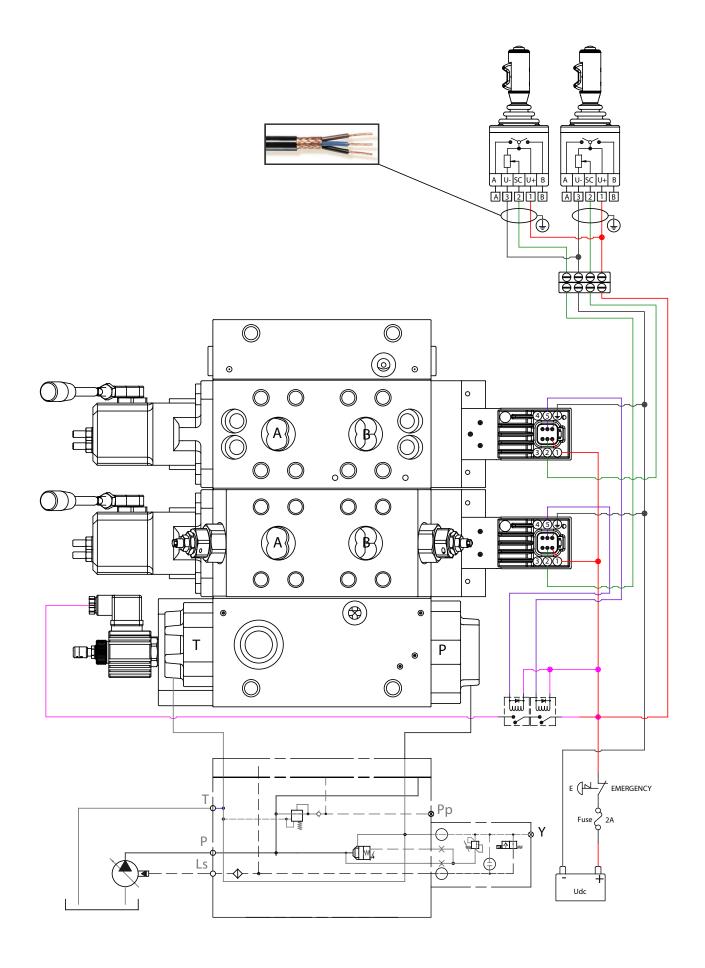

- Inductive transducer with resolution < 12 μm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace to
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power


PEAC132 Technical data		
Rated supply voltage	10-30 Vdc	
Max ripple	5%	
Signal control	0-10 V	
Range control signal	2,5 V to 7,5 V	
Neutral spool position	5 V	
Max threshold signal, A port	1 V	
Max threshold signal, B port	1 V	
Max current signal @ rated voltage	48 mA	
Input capacitor	100 ηF	
Signal control impedance	25 kΩ	
Power consumption	8,7 W	
Heat insulation	Class H (180°C)	
Duty cycle	ED 100%	
Max current consumption	650 mA	
Current consumption in neutral position	80 mA	
Coil impedance @ 20°C	8,9 Ω	
Dither frequency	50-200 Hz	
Recommended frequency	100 Hz	
Enclouser degree (Electrical wiring excepted)	IP 66 - IP 67 - IP 69K	
Weight cast iron body	1,8 kg	
Weight aluminium body	1,3 kg	

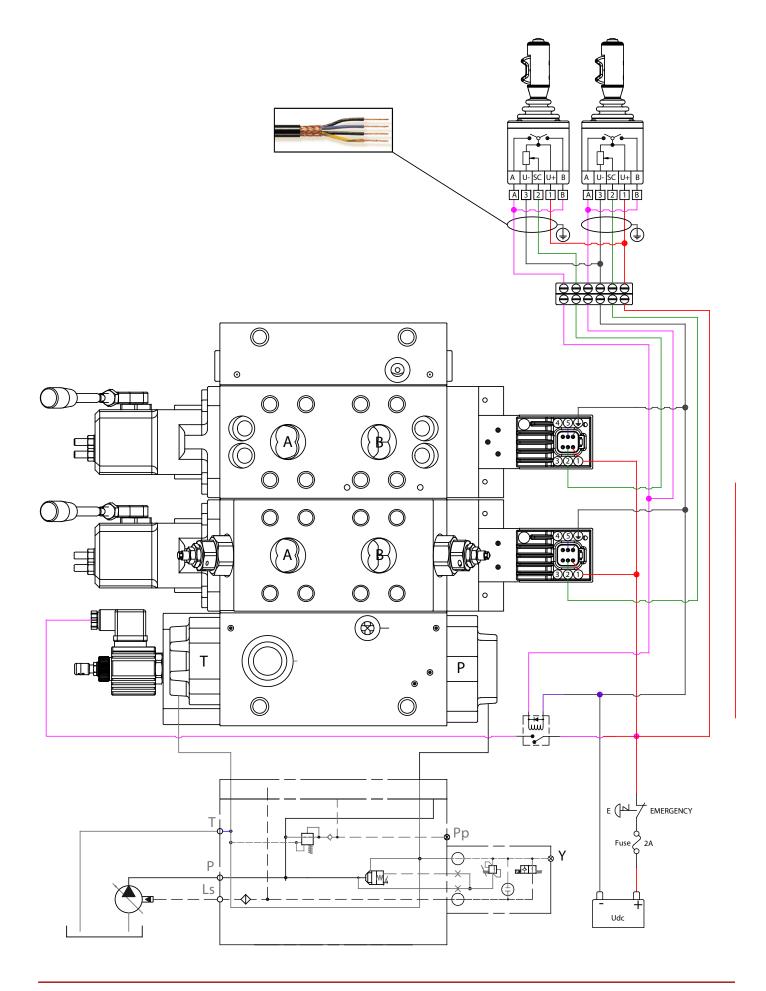

Fault monitoring system	Max current on safety output (pin 5)	50 mA
	Reaction time a fault	500 ms
Max current output signal for spool direction moviment		50 mA
Reaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms
	From max spool travel to neutral	70 - 90 ms
Reaction time (neutral switch)	From neutral position to max spool travel	130 - 170 ms
	From max spool travel to neutral	70 - 90 ms



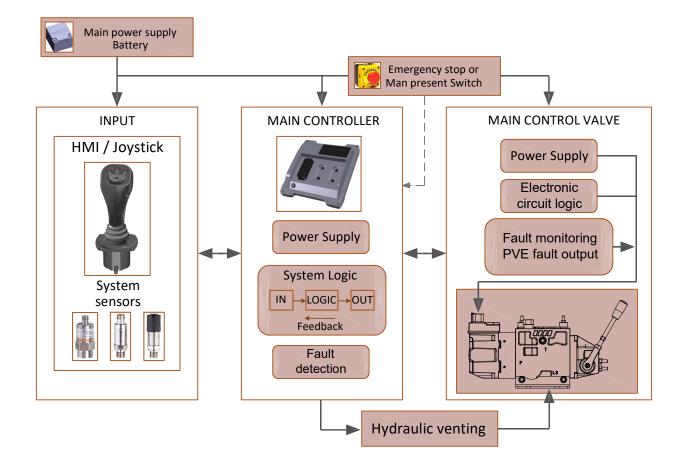




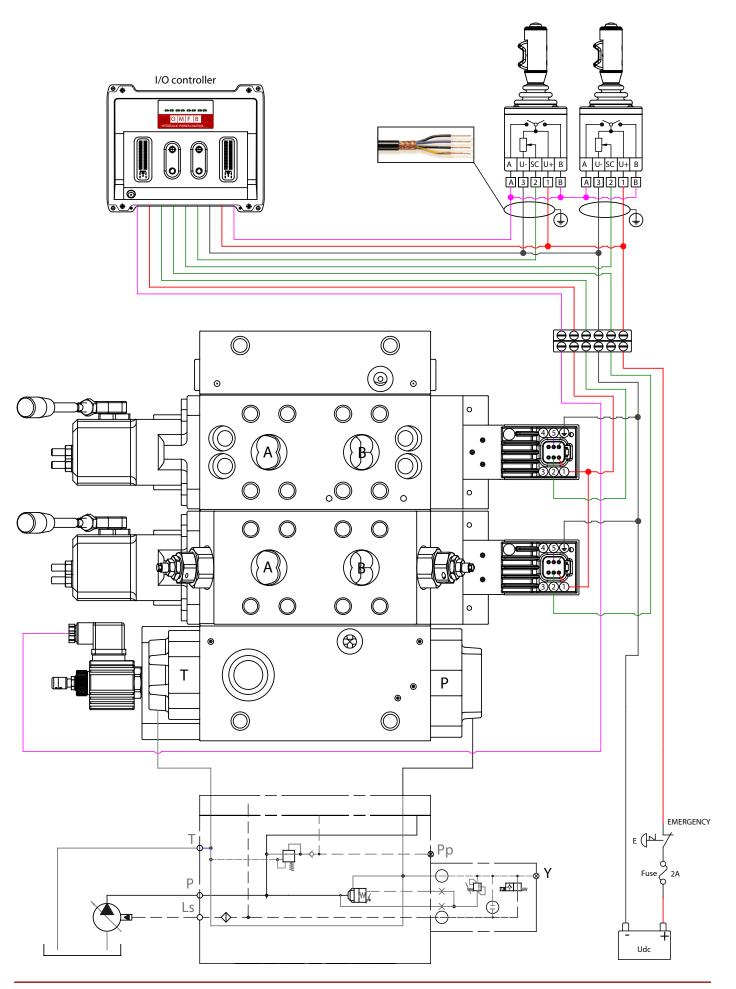
	Code numbers			
Connector version	Active version		Passive version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch DT06-6S	PEAC0182000	PEAC1182000	PEAC0172000	PEAC1172000
DIN 43650	PEAC0182200	PEAC1182200	PEAC0172200	PEAC1172200

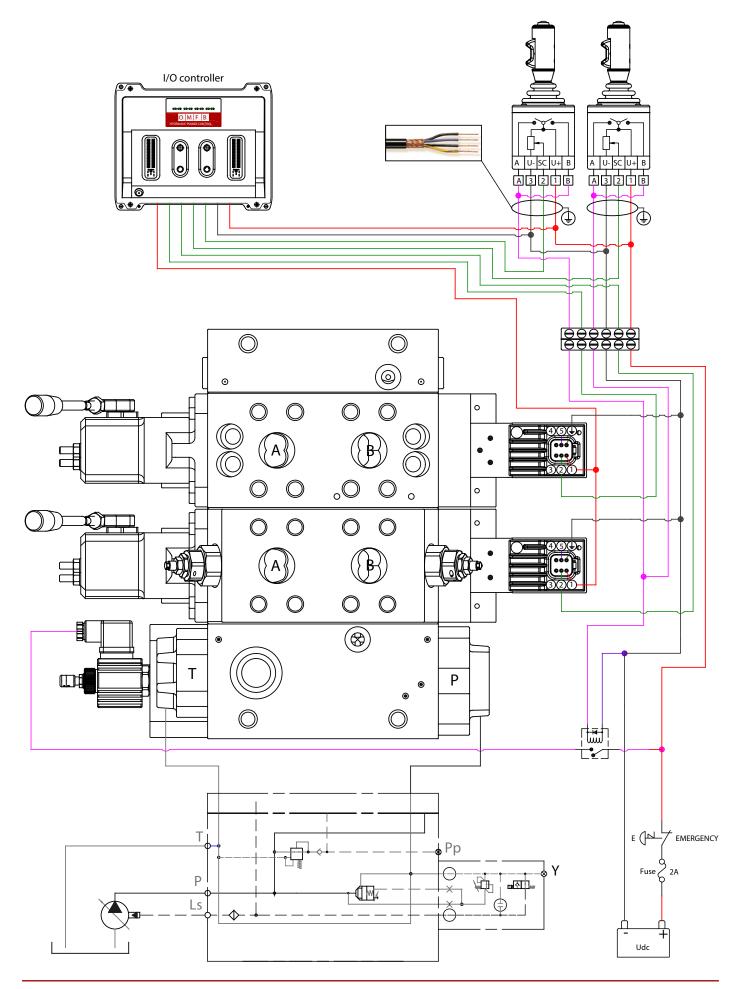


PDV315 - PEAC132 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V



PDV315 - PEAC132 Electro-hydraulic proportional actuation. Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V





PDV315 - PEAC132 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V

PDV315 - PEAC132 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V

PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 4 ÷ 20 mA

PEAC136 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control. The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC136 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

Active fault monitoring

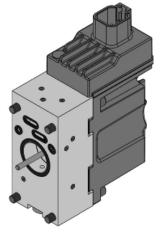
When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

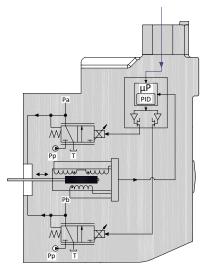
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

Passive fault monitoring

When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.


When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin


This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

The use of PEAC136 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.

When the PEAC136 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA

PEAC136 is defined by:

- Inductive transducer with resolution < 12 µm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

Rated supply voltage	10 ÷ 30 Vdc
Max ripple	5%
Signal control	4 ÷ 20 mA
Range control signal	4 mA to 20 mA
Neutral spool position	12 mA
Max threshold signal, A port	1,5 mA
Max threshold signal, B port	1,5 mA
Max current signal @ rated voltage	48 mA
Input capacitor	100 ηF
Signal control impedance	220 Ω
Power consumption	8,7 W
Heat insulation	Class H (180°C)
Duty cycle	ED 100%
Max current consumption	650 mA
Current consumption in neutral position	80 mA
Coil impedance @ 20°C	8,9 Ω
Dither frequency	50 ÷ 200 Hz
Recommended frequency	100 Hz
Enclouser degree (Electrical wiring excepted)	IP65 - IP66 - IP69K
Weight cast iron body	1,8 kg
Weight aluminium body	1,3 kg

Bootloader function, debugging parameters and set-up function available with Deutsch connector DT06-6S, only Fault monitoring system Max current on safety output (pin 5) 50 mA Reaction time a fault 500 ms Max current output signal for spool direction moviment 50 mA

Reaction time (constant voltage)

Reaction time (neutral switch)

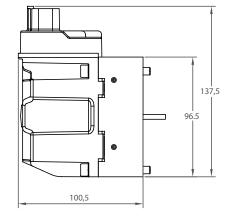
110 ÷ 140 ms

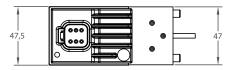
70 ÷ 90 ms

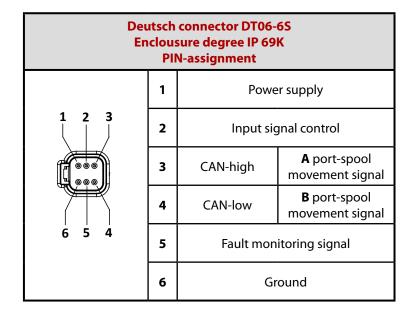
130 ÷ 170 ms

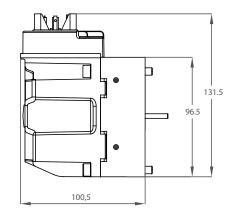
70 ÷ 90 ms

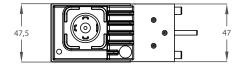
From max spool travel to neutral

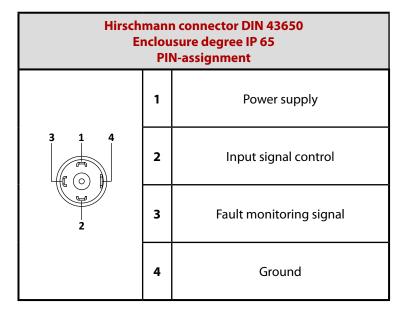

From max spool travel to neutral

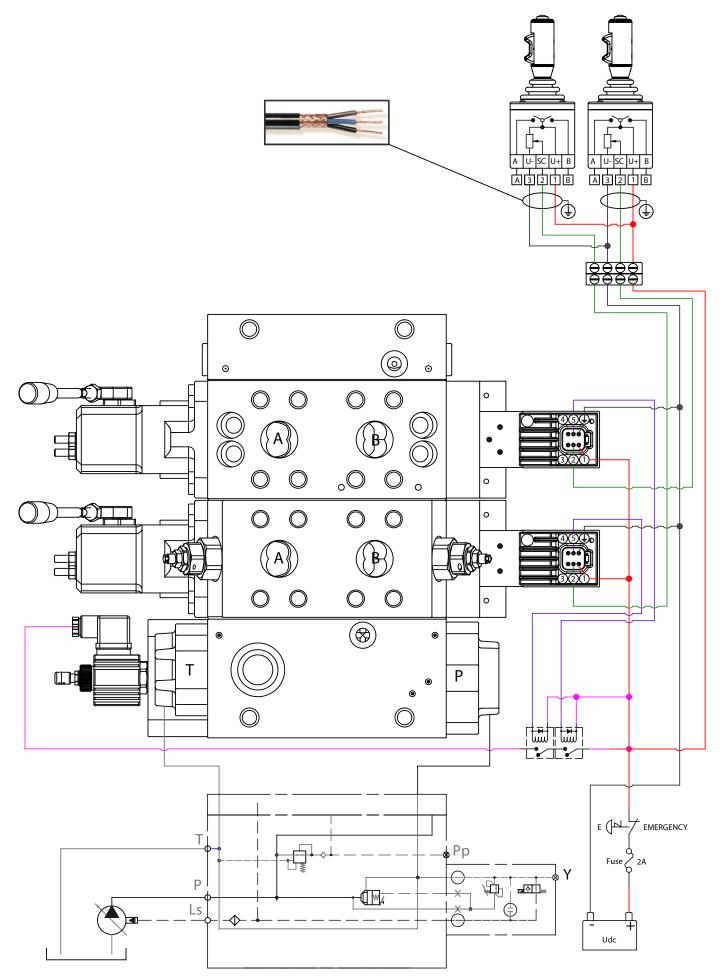

From neutral position to max spool travel


From neutral position to max spool travel

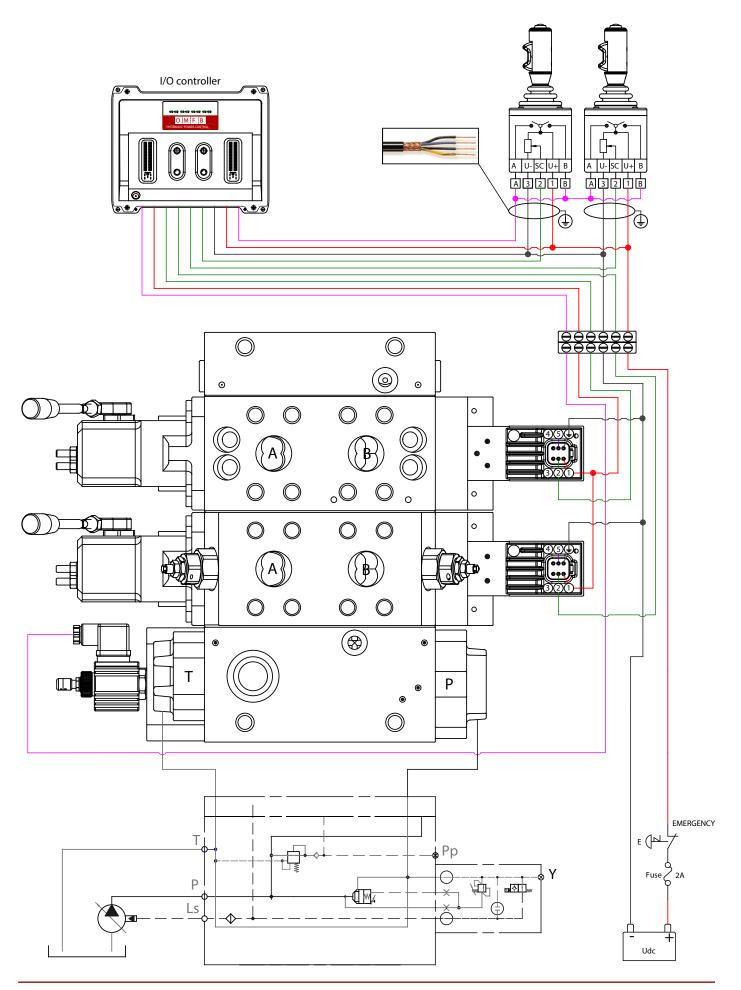



PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA - Electrical connectors

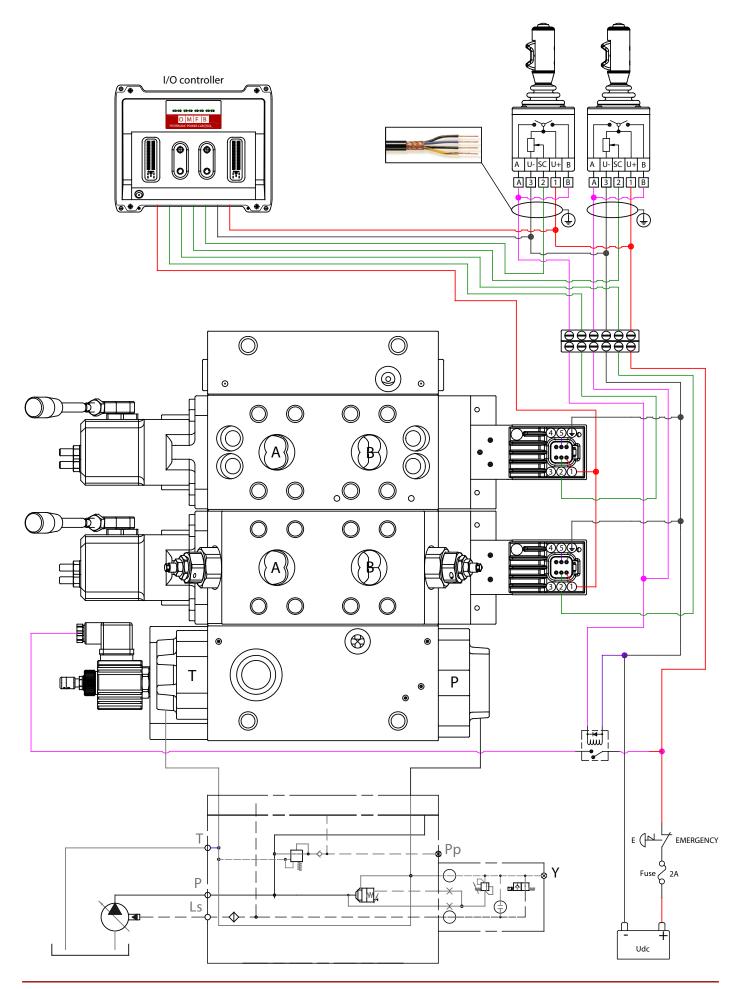




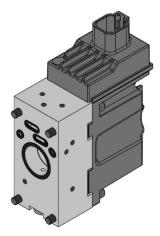
	Code numbers			
Connector version	Active version		Passive version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch DT06-6S	PEAC0186000	PEAC1186000	PEAC0176000	PEAC1176000
DIN 43650	PEAC0186200	PEAC1186200	PEAC0176200	PEAC1176200



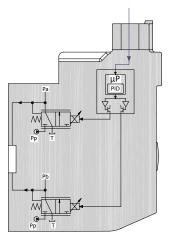
PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 4 ÷ 20 mA



PDV315 - PEAC136 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Input signal 4 ÷ 20 mA

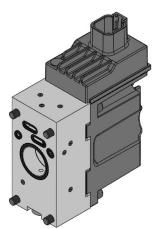


PDV315 - PEAC136 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 4 ÷ 20 mA



PEAC031 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

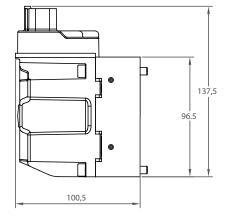
The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

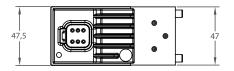

PEAC031 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

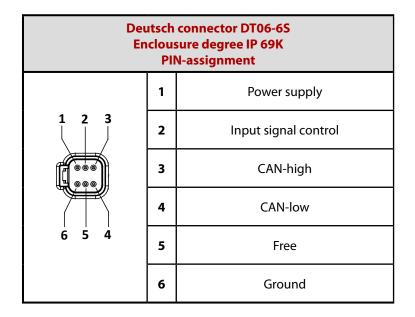
PEAC031 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

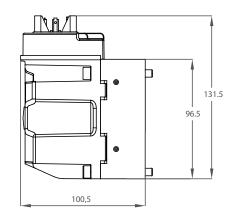
PDV315 - PEAC031 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc

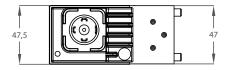
PEAC031 is defined by:

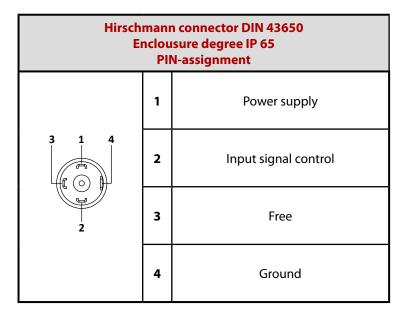

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

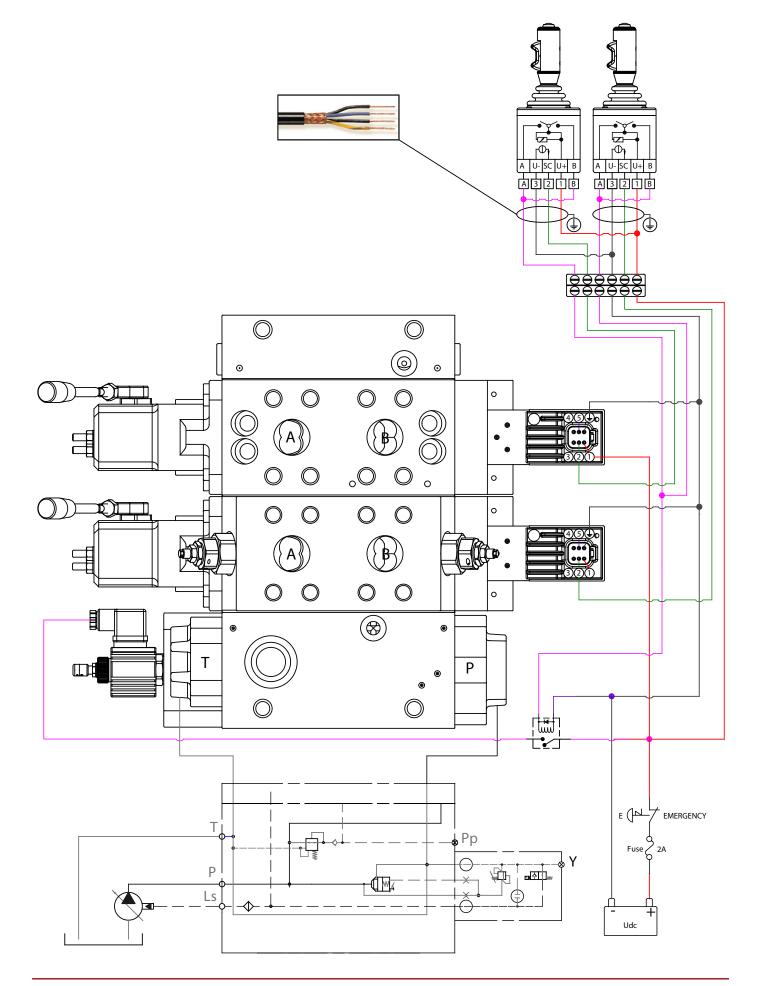

PEAC031 Technical data			
Rated supply voltage		10-30 Vdc	
Max ripple		5%	
Signal control		0,5 Udc	
Range control signal		0,25 Udc to 0,75 Udc	
Neutral spool position		0,5 Udc	
Max threshold signal, A port		1 V	
Max threshold signal, B port		1 V	
Max current signal @ rated voltage		48 mA	
Input capacitor		100 ηF	
Signal control impedance		25 kΩ	
Power consumption		8,7 W	
Heat insulation		Class H (180°C)	
Duty cycle		ED 100%	
Max current consumption		650 mA	
Current consumption in neutral position		80 mA	
Coil impedance @ 20°C		8,9 Ω	
Dither frequency		50-200 Hz	
Recommended frequency		100 Hz	
Enclouser degree (E	lectrical wiring excepted)	IP 66 - IP 67 - IP 69K	
Weight cast iron body		1,8 kg	
Weight aluminium body		1,3 kg	


Bootloader function, debugging parameters and set-up function available only with Deutsch connector DT06-6S

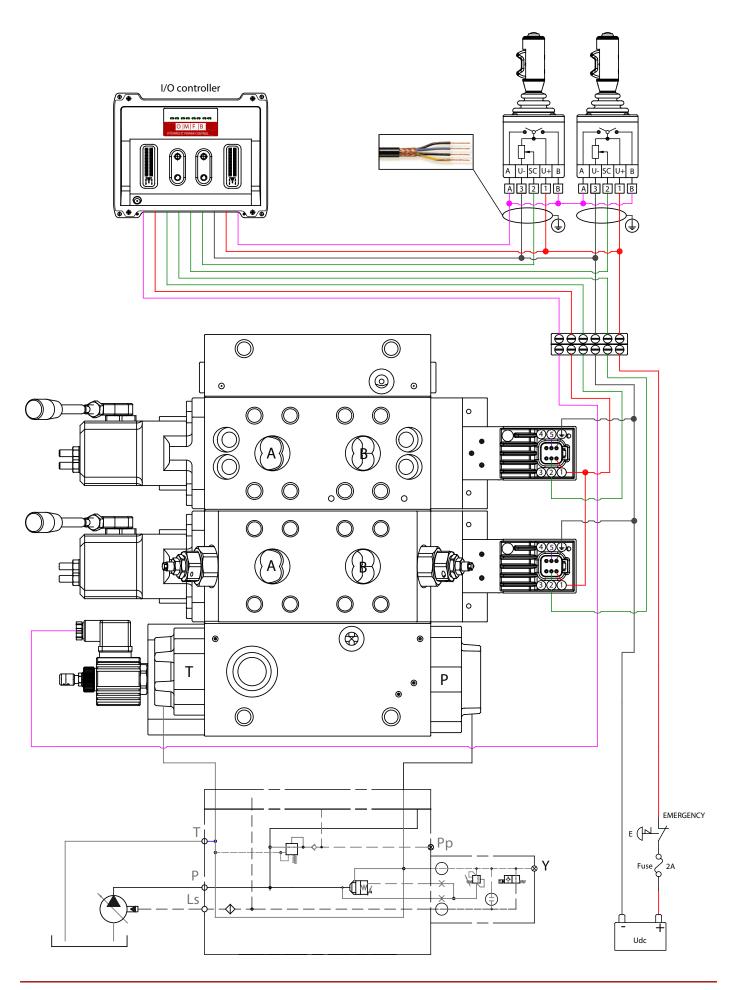

Reaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms
	From max spool travel to neutral	70 - 90 ms
Reaction time (neutral switch)	From neutral position to max spool travel	130 - 170 ms
	From max spool travel to neutral	70 - 90 ms



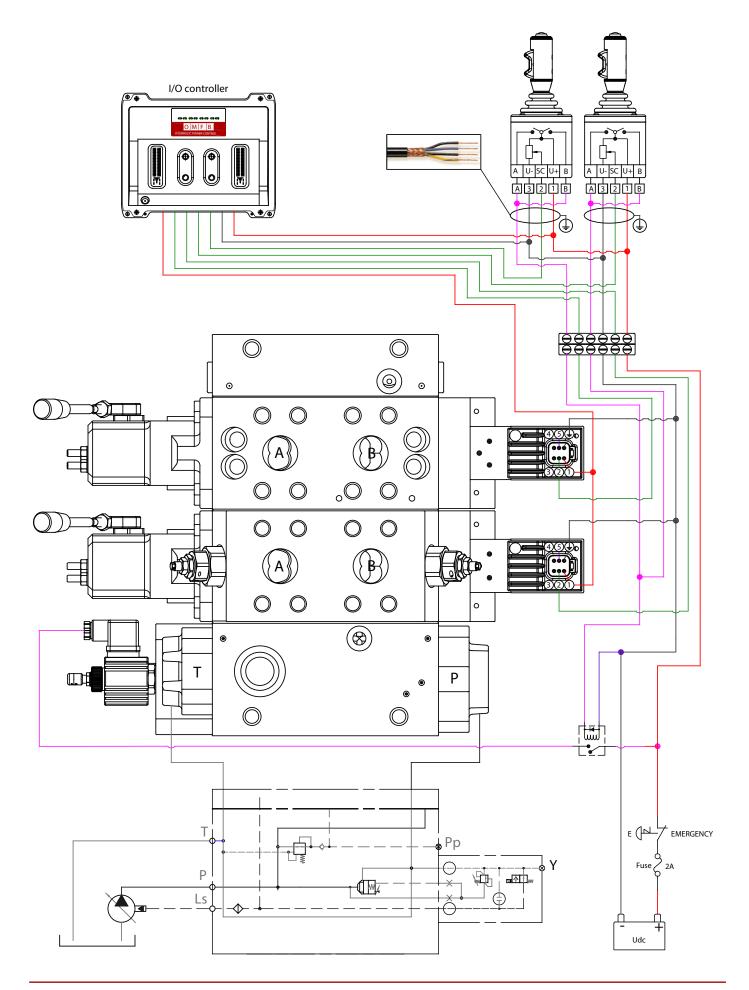




	Code numbers			
Connector version	Active version		Passive version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch DT06-6S	PEAC0081000	PEAC1081000	PEAC0071000	PEAC1071000
DIN 43650	PEAC0081200	PEAC1081200	PEAC0071200	PEAC1071200

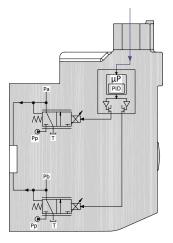


PDV315 - PEAC031 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc



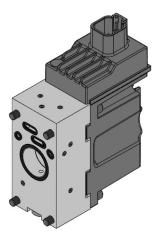
PDV315 - PEAC031 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc

PDV315 - PEAC031 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc



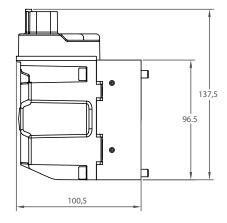
PEAC032 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

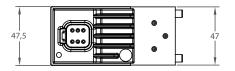
The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

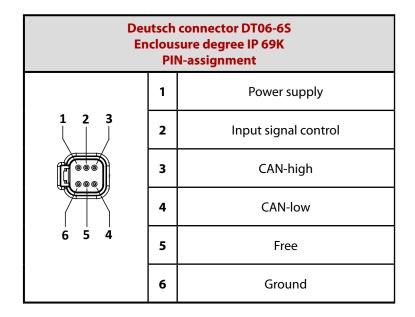

PEAC032 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

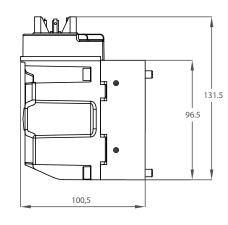
PEAC032 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

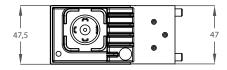
PDV315 - PEAC032 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0 ÷ 10 V

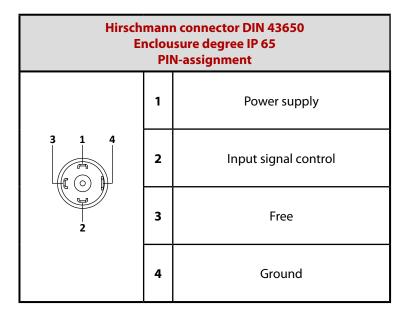

PEAC032 is defined by:

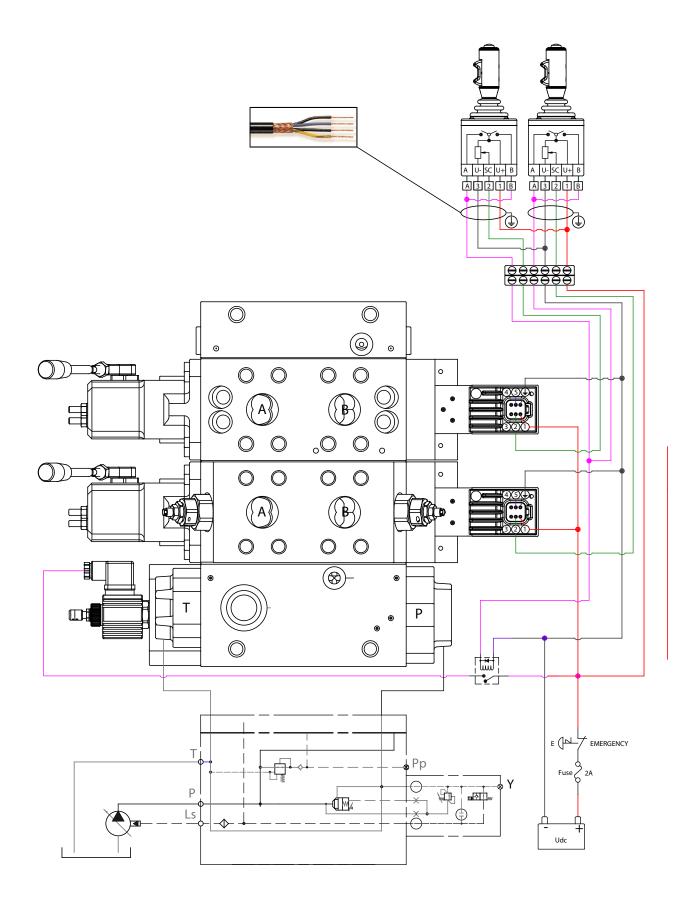

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design


Rated supply voltage	10-30 Vdc
Max ripple	5%
Signal control	0-10 V
Range control signal	2,5 V to 7,5 V
Neutral spool position	5 V
Max threshold signal, A port	1 V
Max threshold signal, B port	1 V
Max current signal @ rated voltage	48 mA
Input capacitor	100 ηF
Signal control impedance	25 kΩ
Power consumption	8,7 W
Heat insulation	Class H (180°C)
Duty cycle	ED 100%
Max current consumption	650 mA
Current consumption in neutral position	80 mA
Coil impedance @ 20°C	8,9 Ω
Dither frequency	50-200 Hz
Recommended frequency	100 Hz
Enclouser degree (Electrical wiring excepted)	IP 66 - IP 67 - IP 69K
Weight cast iron body	1,8 kg
Weight aluminium body	1,3 kg

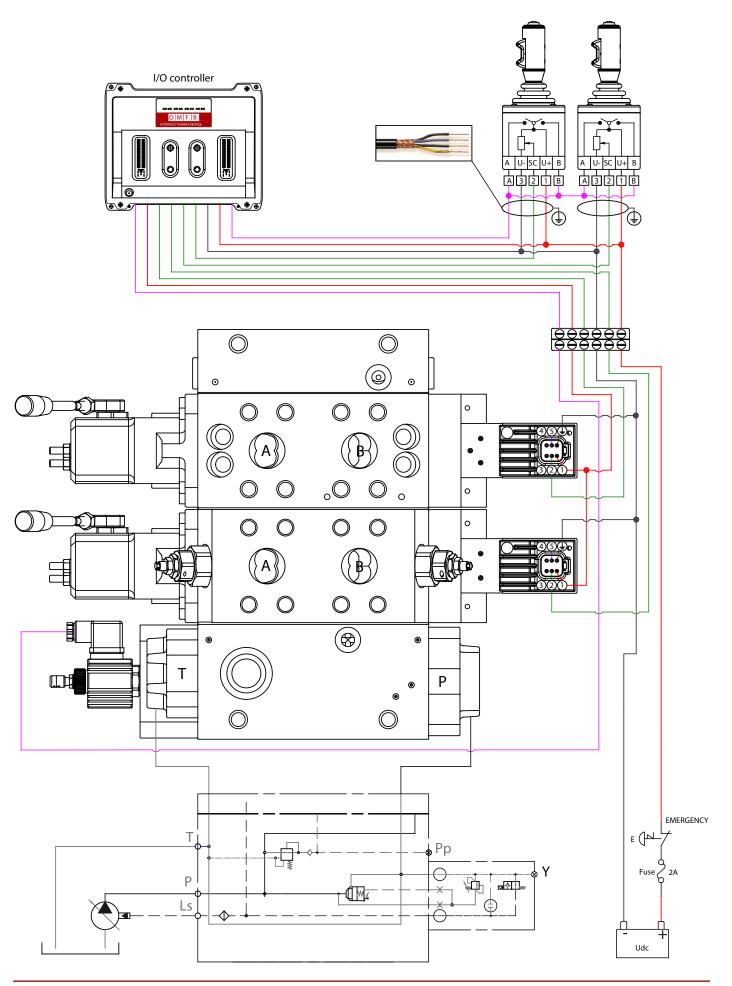

Prostion time (constant voltage)	From neutral position to max spool travel	110 - 140 ms
Reaction time (constant voltage)	From max spool travel to neutral	70 - 90 ms
Reaction time (neutral switch)	From neutral position to max spool travel	130 - 170 ms
	From max spool travel to neutral	



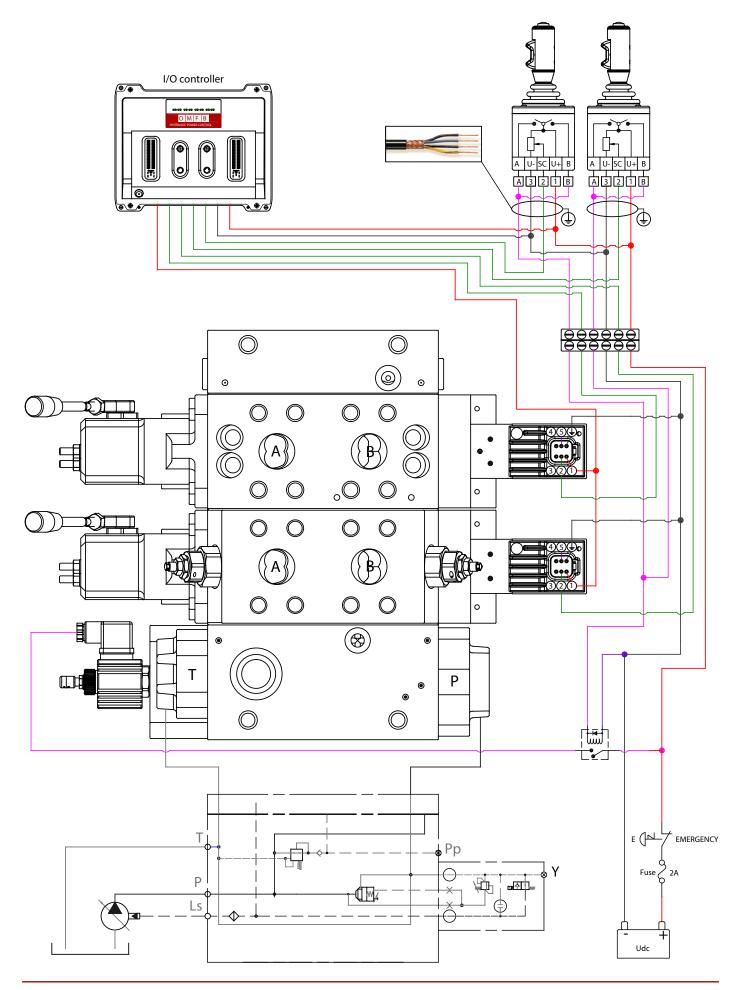




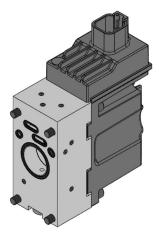
	Code numbers						
Connector version	Active	version	Passive version				
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body			
Deutsch DT06-6S	eutsch DT06-6S PEAC0082000 PEAC1082000		PEAC0072000	PEAC1072000			
DIN 43650	PEAC0082200	PEAC0082200 PEAC1082200		PEAC1072200			



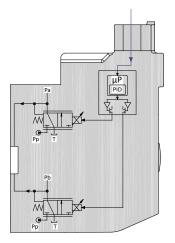
PDV315 - PEAC032 Electro-hydraulic proportional actuation. Open loop spool control, high performance resolution Input signal control 0 ÷ 10 V



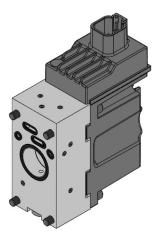
PDV315 - PEAC032 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V



PDV315 - PEAC032 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V

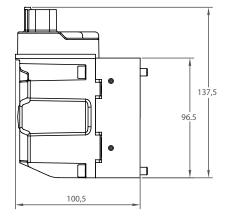


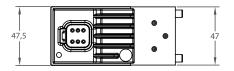
PEAC036 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

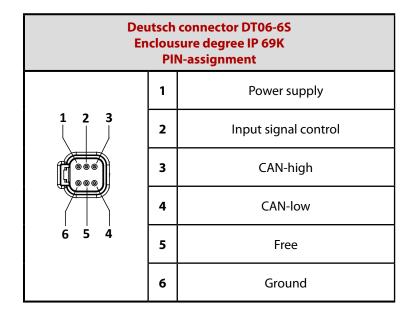

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

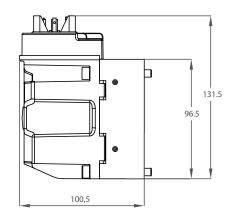
PEAC036 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

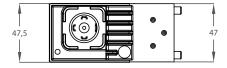
PEAC036 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

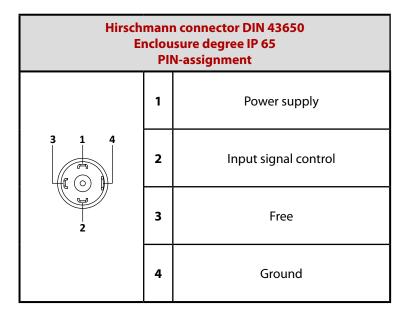


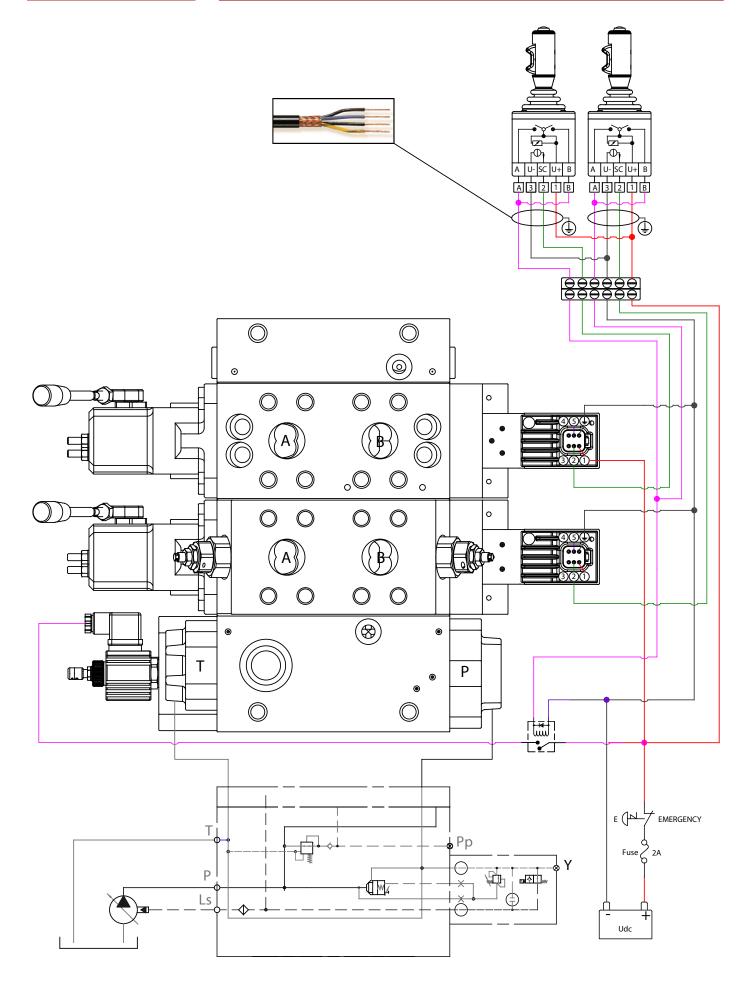

PEAC036 is defined by:


- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

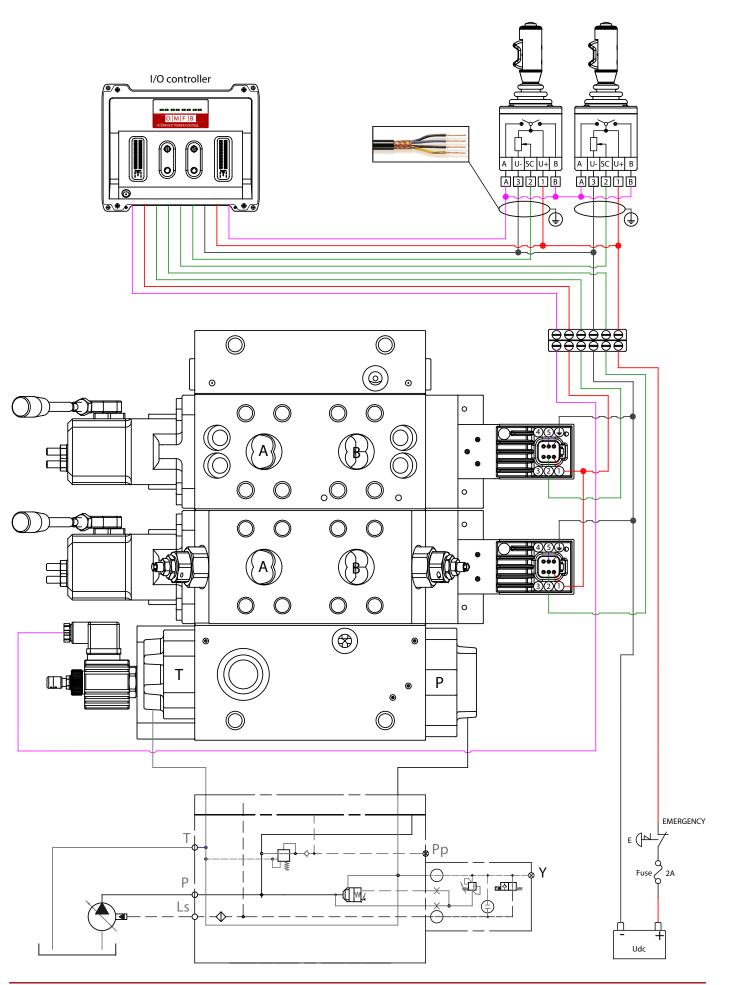

	PEAC036 Technical data	
Rated supply voltage		10-30 Vdc
Max ripple		5%
Signal control		4-20 mA
Range control signal		4 mA to 20 mA
Neutral spool position		12 mA
Max threshold signal, A port		1,5 mA
Max threshold signal, B port		1,5 mA
Input capacitor		100 ηF
Input impedance		220 Ω
Power consumption		8,7 W
Heat insulation		Class H (180°C)
Duty cycle		ED 100%
Max current consumption		650 mA
Current consumption in neutral position		80 mA
Max current start spool travel		140 mA
Max current end spool travel		450 mA
Coil impedance @ 20°C		8,9 Ω
Signal control impedance		50 ΚΩ
Dither frequency		50-200 Hz
Recommended frequency		100 Hz
Enclouser degree (El	ectrical wiring excepted)	IP65 - IP66 - IP69K
	on, debugging parameters and set-up function with Deutsch connector DT06-6S, only	n available
	From neutral position to max spool travel	110 - 140 ms
Reaction time (constant voltage)	From max spool travel to neutral	70 - 90 ms
	From neutral position to max spool travel	130 - 170 ms
Reaction time (neutral switch)	From max spool travel to neutral	70 - 90 ms



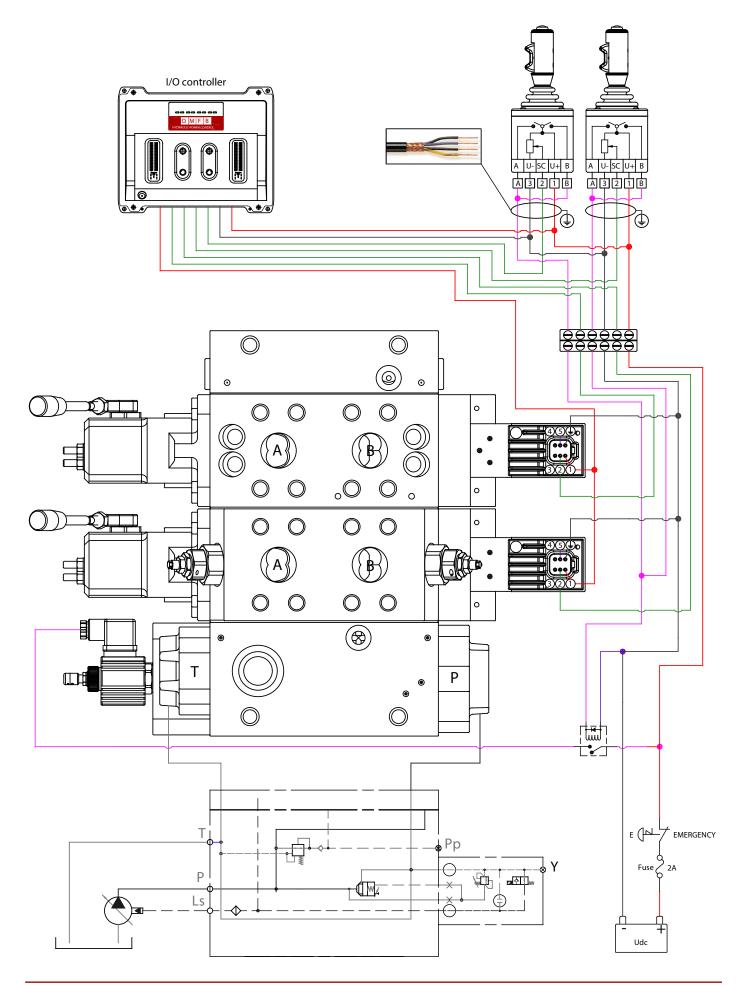




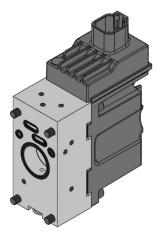
	Code numbers						
Connector version	Active	version	Passive version				
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body			
Deutsch DT06-6S	PEAC0086000	PEAC1086000	PEAC0076000	PEAC1076000			
DIN 43650	PEAC0086200 PEAC1086200		PEAC0076200	PEAC1 <mark>076</mark> 200			



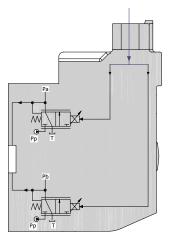
PDV315 - PEAC036 Electro-hydraulic proportional actuation. Input signal control 4-20 mA Electrical wiring



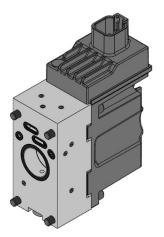
PDV315 - PEAC036 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Current input signal 4 ÷ 20 mA



PDV315 - PEAC036 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Current input signal 4 ÷ 20 mA

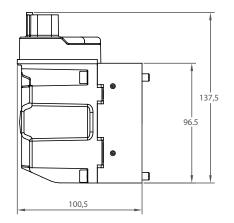


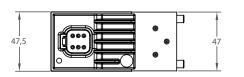
PEAD3 is a proportional open loop spool actuation without integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.


The input signal by means of the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

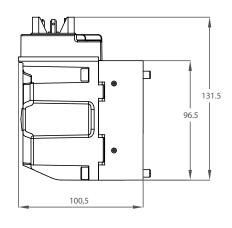
PEAD3 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

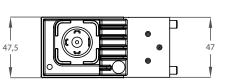
PEAD3 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

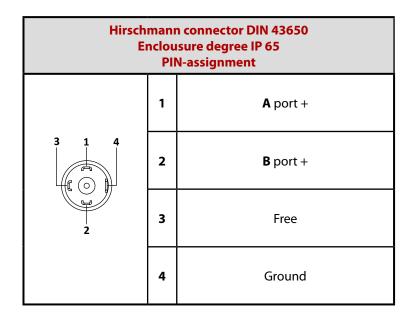


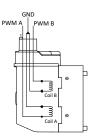

PEAD3 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

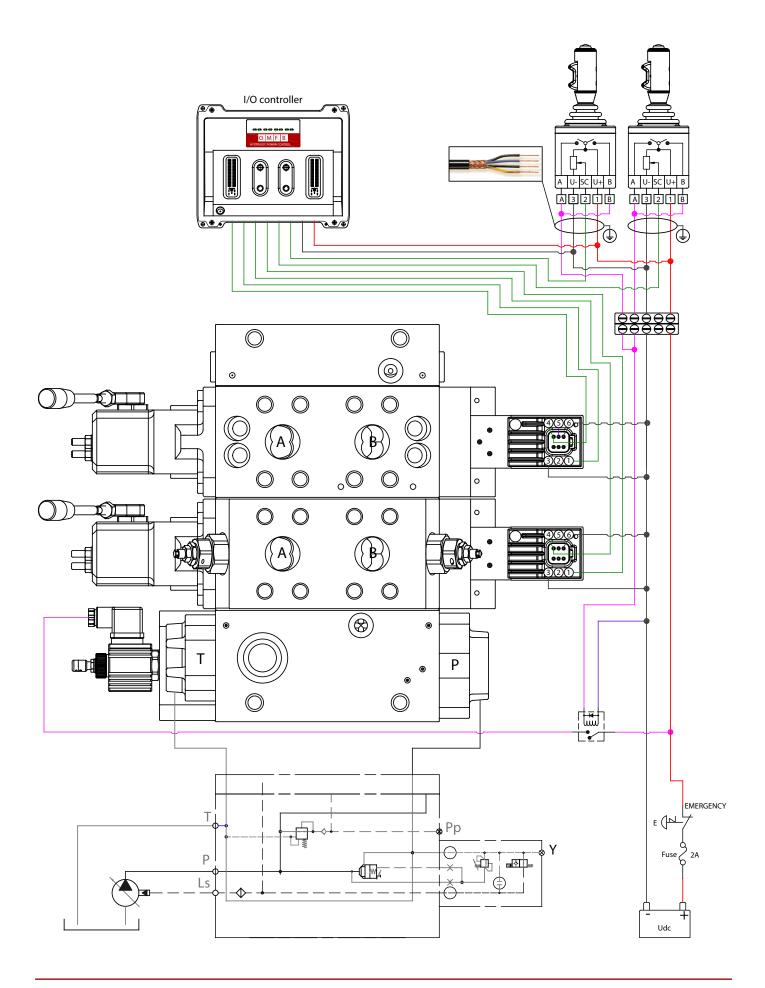

	PEAD3 Technical data			
Supply voltage		12 Vdc	24 Vdc	
Voltage range	10-16 V	20-30 V		
Max ripple		5%	5%	
Current consuption at rated voltage		750 mA @ 12 Vdc	400 mA @ 24 Vdc	
Power consumption		9 W	9,6 W	
R @ 20°C		8,9 Ω	35 Ω	
Start spool travel		220 mA	140 mA	
End spool travel flow control		650 mA	350 mA	
Max spool flow in pre-floating position	n	650 mA	350 mA	
Spool floating position	750 mA	400 mA		
Heat insulation	Class H (180°C)			
Oil temperature (Recommend	20 ÷ 60 °C			
Oil temperature (Min)	-30 °C			
Oil temperature (Max)	80 °C			
Ambient temperature		-30 ÷ 60 ℃		
PWM frequency		50 ÷ 200 Hz		
Best frequency		100) Hz	
Duty cycle		1004	% ED	
Plug connector		6 pins Deutsc	h or 4 pins DIN	
Enclouser degree	(Electrical wiring excepted)	IPe	59K	
Weight cast iron body		1, 8	3 kg	
Weight Aluminium body		1,3	kg	
Max current output signal for spool d	irection moviment	50	mA	
	From neutral position to max spool travel	110 - 1	140 ms	
Reaction time (constant voltage)	From max spool travel to neutral	70 - 9	90 ms	
	From neutral position to max spool travel	130 - 1	170 ms	
Reaction time (neutral switch)	From max spool travel to neutral	70 - 9	90 ms	



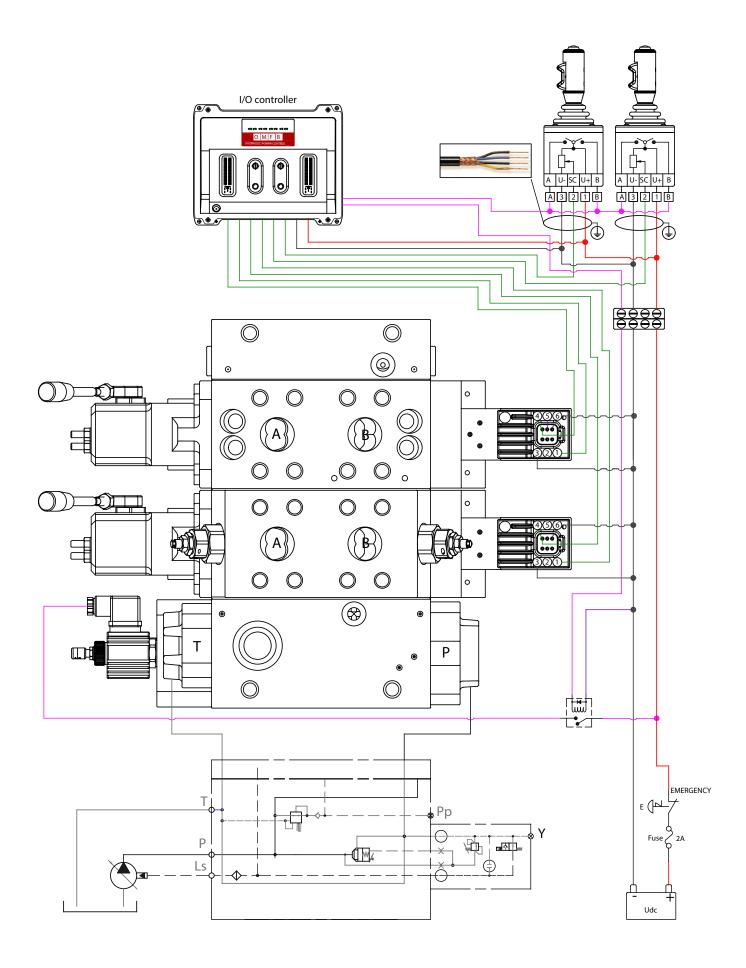




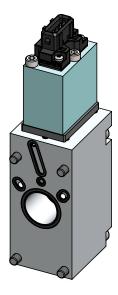
Deutsch connector DT06-6S Enclousure degree IP 69K PIN-assignment					
	1	A port +			
1 2 3 /	2	Free			
	3	A port -			
	4	B port +			
654	5	Free			
	6	B port -			



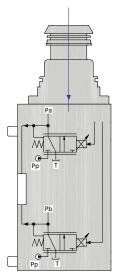
	Code numbers							
Connector version	12	2 V	24 V					
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body				
Deutsch DT06-6S	PEAD0100002 PEAD1100002		PEAD0200002	PEAD1200002				
DIN 43650	PEAD0120002	PEAD1120002	PEAD0220002	PEAD1220002				



PDV315 - PEAD3 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control



PDV315 - PEAD3 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

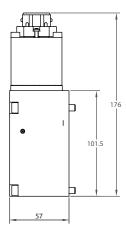


PEAP3 is a proportional open loop spool actuation without integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

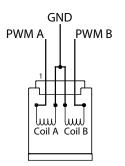
The input signal by means of the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

PEAP3 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

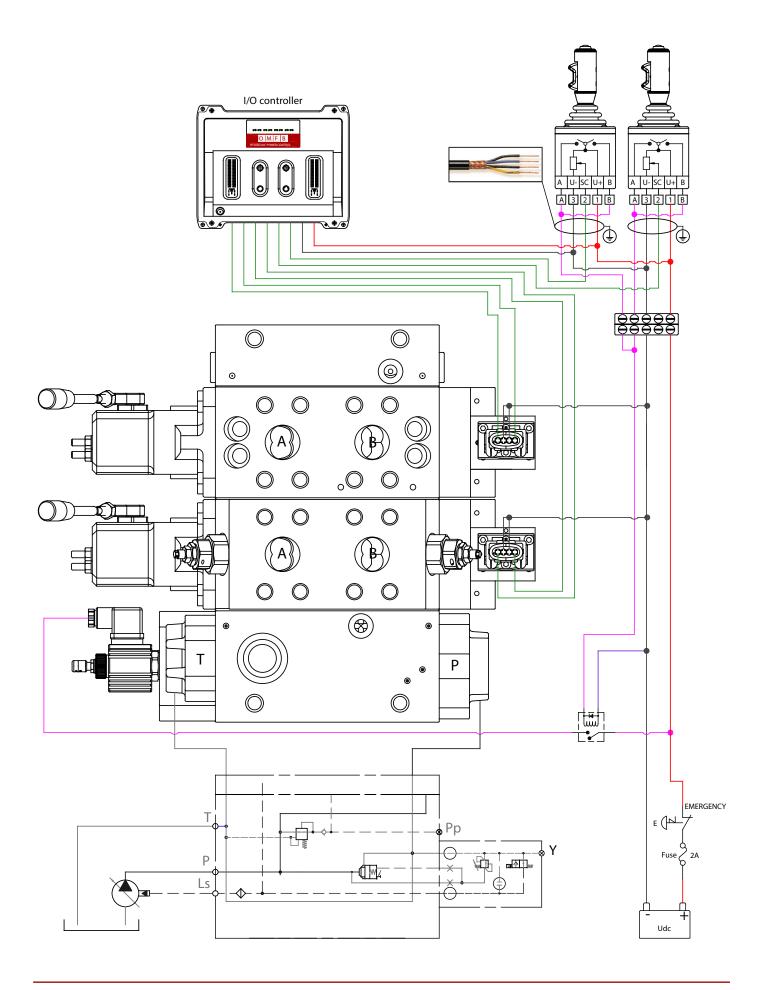
PEAP3 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.


PEAP3 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

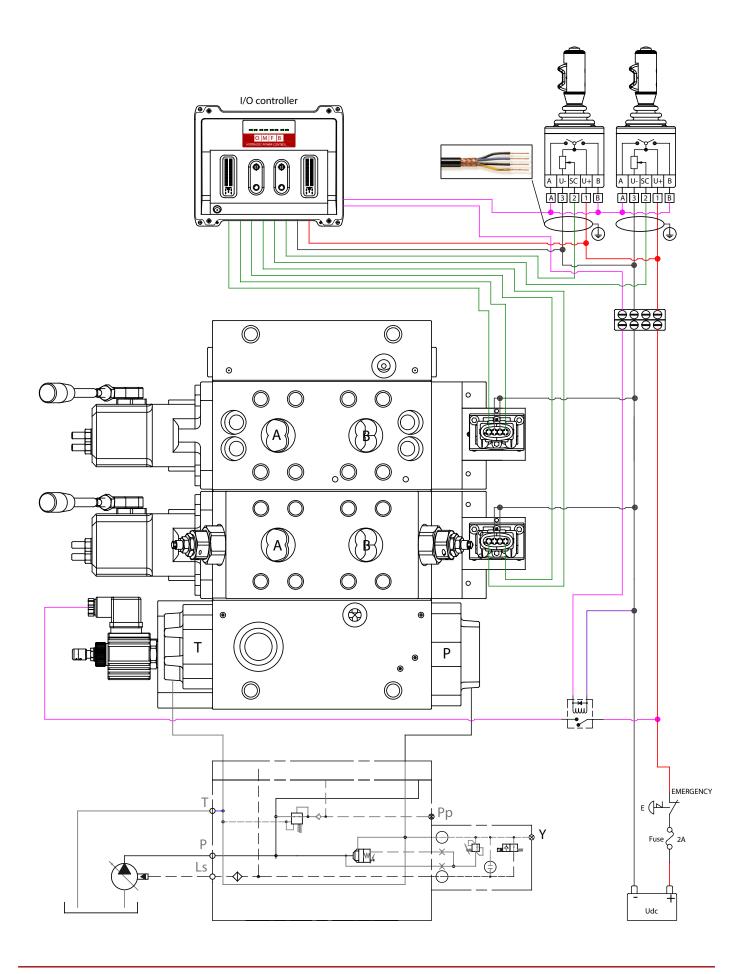

	PEAP3 Technical data		
Supply voltage		12 Vdc	24 Vdc
Voltage range		10-16 V	20-30 V
Max ripple	5%	5%	
Current consuption at rated volta	ge	1330 mA @ 12 Vdc	630 mA @ 24 Vdc
Power consumption		23 W	21 W
R @ 20°C		6,3 Ω	27 Ω
Start spool travel		220 mA	140 mA
End spool travel flow control		1330 mA	550 mA
Max spool flow in pre-floating pos	1330 mA	630 mA	
Spool floating position	750 mA	400 mA	
Heat insulation	Class H (180°C)		
Oil temperature (Recomme	-20 ÷ 60 °C		
Oil temperature (Min)	-30 °C		
Oil temperature (Max)		80	°C
Ambient temperature		-30 ÷	60 °C
PWM frequency		50 ÷ 2	200 Hz
Best frequency		100) Hz
Duty cycle		1009	% ED
Plug connector		Amp Junior Pov	ver Timer 4 pins
Enclouser degree	(Electrical wiring excepted)	IP6	69K
Max current output signal for spo	ol direction moviment	50	mA
Reaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms	
neaction time (constant voltage)	From max spool travel to neutral	70 - 9	90 ms
Reaction time (neutral switch)	From neutral position to max spool travel	130 - 1	70 ms
neaction time (neutral switch)	From max spool travel to neutral	70 - 9	90 ms

PDV315 - PEAP3 Electro-hydraulic proportional actuation Input signal control PWM - Current input signal for PWM or supply voltage for ON/OFF control - Electrical connector

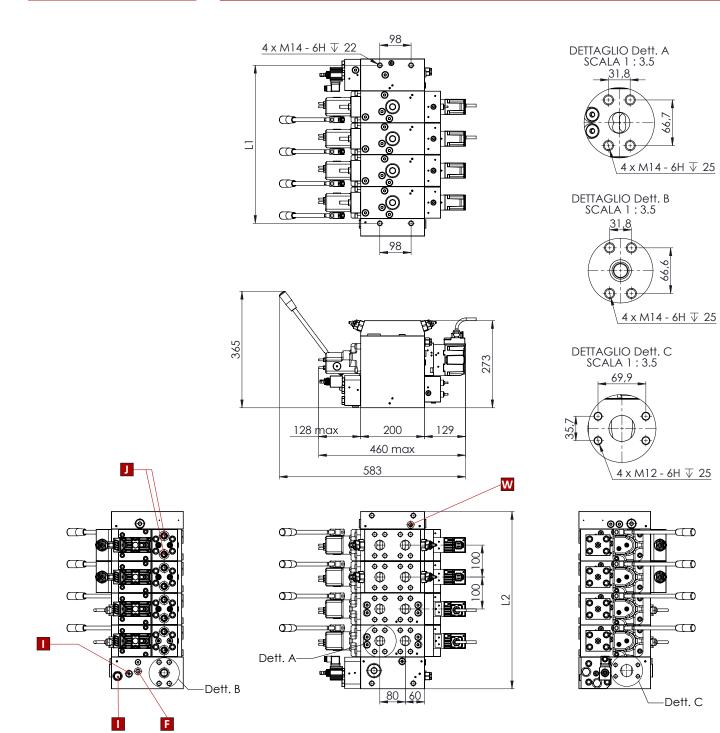


Amp Junior Power Timer 4 pin connector Enclousure degree IP 65 PIN-assignment							
	1	A port +					
	2	A port -					
	3	B port -					
	4	B port +					

	Code numbers						
Connector version	12	2 V	24 V				
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body			
AMP Junior timer 4 Pin	PEAP0312002	PEAP1312002	PEAP0412002	PEAP1412002			



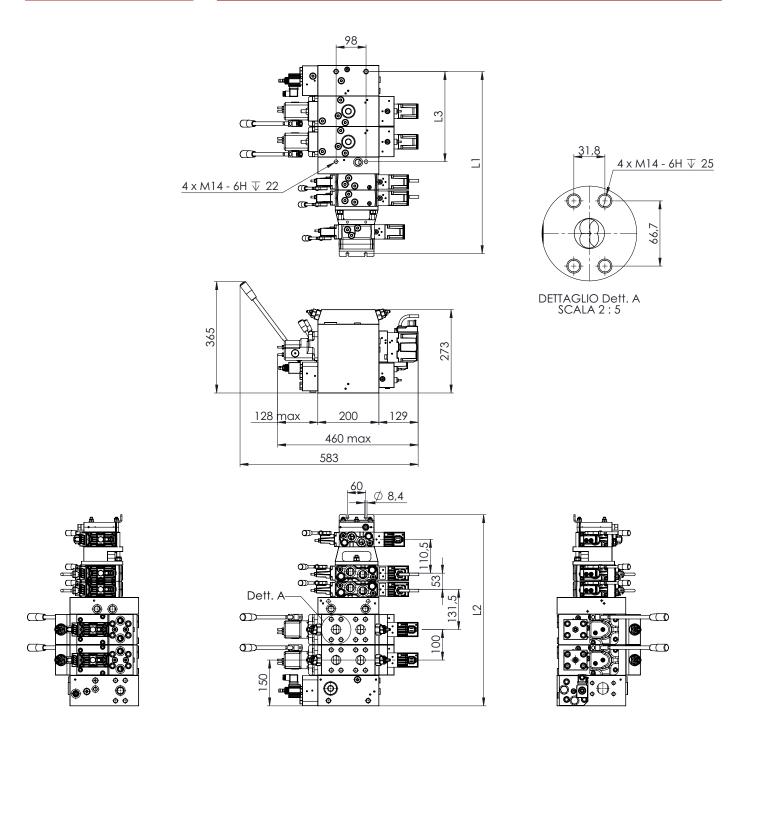
PDV315 - PEAP3 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control



PDV315 - PEAP3 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

PDV315 Proportional valve Overall dimensions drawing with standard inlet section Right assembly version

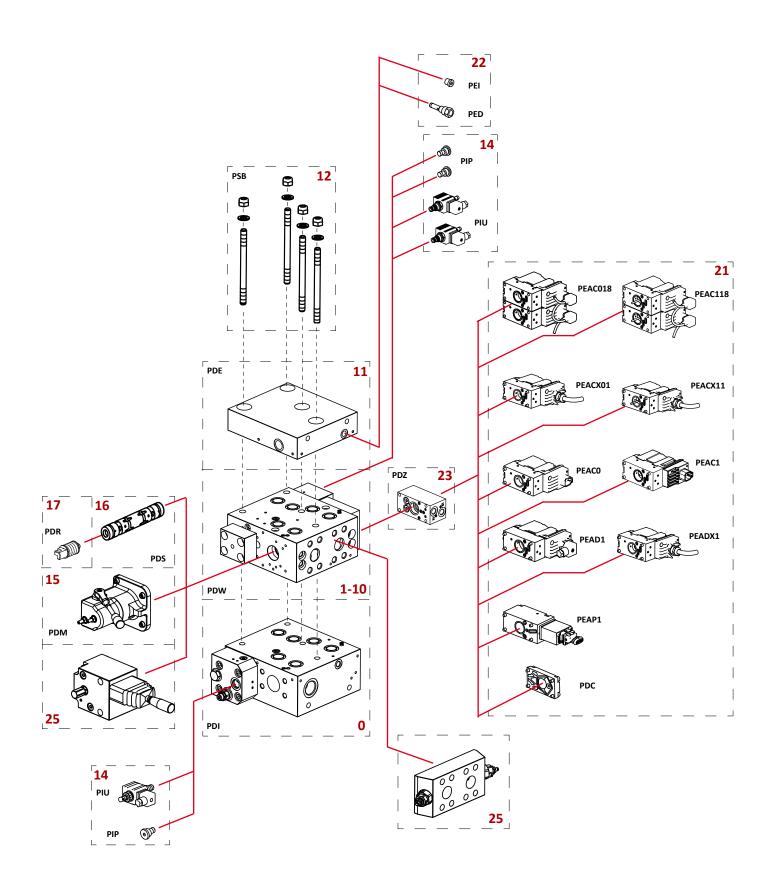
P	DW	1	2	3	4	5	6	7	8	9	10	11	12
11	mm	180	228	276	324	372	420	468	516	564	612	660	708
	in	7,09	8,98	10,87	12,76	14,65	16,54	18,43	20,31	22,20	24,09	25,98	27,87
	mm	200	248	296	344	392	440	488	536	584	632	680	728
L2	in	7,87	9,76	11,65	13,54	15,43	17,32	19,21	21,10	22,99	24,88	26,77	28,66


99740000PDV AC 11/06/2021

A = Pump side port - 3/4" BSPP - 17 mm deep [1 ¼6 in 12 UN-2B - 0,67 in deep]
B = T port - 3/4″ BSPP - 17 mm deep [1 ¼ in 12 UN - 2B - 0,67 in deep]
C = Main pressure relief valve
D = Main pressure reducing valve
E = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
F = LS connection 1/4″ BSPP - 12 mm deep [¾ in-20 UNF-2B - 0,47 in deep]
G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
Tank pressure gauge connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
J = Electrical LS/pump unloading function
K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep]
E = Pump unloading mechanical override
M = A-B port mechanical flow adjustment
Image: Second state of the second state of
$\mathbf{P} = LS$
Q = Port A } 1/2" BSPP - 17 mm deep [% in-14 UNF-2B - 0,67 in deep]
\mathbf{R} = Port B \mathbf{J}
S = LsB pilot pressure relief valve
\Box = LSA \checkmark
U = Shock/suction valve B port
\mathbf{V} = Shock/suction value A port
W = External drain connection electric actuations - 1/4″ BSPP - 12 mm deep [⅔6 in-20 UNF-2B - 0,47 in deep]

PDV315 Proportional valve Overall dimensions drawing with double inlet and MID end section

PDW		2	3	4	5	6	7	8	9	10	11	12
1.1	mm	331	379	427	475	523	571	619	667	715	763	811
L1	in	13,03	14,92	16,81	18,70	20,59	22,48	24,37	26,26	28,15	30,04	31,93
12	mm	351	399	447	495	543	591	639	687	735	783	831
L2	in	13,82	15,71	17,60	19,49	21,38	23,27	25,16	27,05	28,94	30,83	32,72


99740000PDV AC 11/06/2021

A = Pump side port - 3/4" BSPP - 17 mm deep [1 ¼6 in 12 UN-2B - 0,67 in deep]
B = T port - 3/4″ BSPP - 17 mm deep [1 ¼6 in 12 UN - 2B - 0,67 in deep]
C = Main pressure relief valve
D = Main pressure reducing valve
E = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
F = LS connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
Tank pressure gauge connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
J = Electrical LS/pump unloading function
K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep]
L = Pump unloading mechanical override
M = A-B port mechanical flow adjustment
■ = LSB remote pilot pressure connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF - 2B - 0,47 in deep]
$\mathbf{P} = LS$
Q = Port A } 1/2" BSPP - 17 mm deep [7% in-14 UNF-2B - 0,67 in deep]
R = Port B J
S = LsB pilot pressure relief valve
U = Shock/suction valve B port
V = Shock/suction valve A port
W = External drain connection electric actuations - 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]

PDV315 Proportional Valve **PDV** Standard configuration

PDV315 Proportional valve, Product selection chart

Reference field		Code numbers see pag		
•	lulat as sticks	001		
0	Inlet sections	Closed centre	PDI	
1-10	Working sostions	with pressure compensator	PDW	
1-10	Working sections	without pressure compensator	PDW	
11		PDE		
12		Stay bolt set	PSB	
14		PIU		
	Plu	PIP		
15		PDM		
16		PDS		
17		Spool centered set	PDR	
		Open loop spool control current signal for PWM and ON-OFF control	PEAD1	
	Proportional electro- hydraulic actuations	Open loop spool control high resolution	PEAC0	
		Closed loop spool control high performance resolution	PEAC1	
		Open loop spool control high resolution CAN-Bus	PEAC018	
		Closed loop spool control high performance resolution CAN-Bus	PEAC118	
		Open loop spool control high resolution ATEX	PEACX01	
21		Closed loop spool control high performance resolution ATEX version	PEACX11	
		Open loop spool control current signal for PWM and ON-OFF control ATEX version	PEADX1	
		Open loop spool control current input signal for PWM and ON-OFF control - AMP JPT 4 pin	PEAP1	
		Hydraulic control	PDH	
	Rear cover for	Detent	PDD	
		Friction detent	PDF	
		Mechanical actuation	PDC	
22	End sections	External drain line cartridge	PED	
22		Internal plug	PEI	
23	D	PDZ		
25				

Code: PDV315 Customer:													
OMFB					Date:				Customer ref:				
HYDRAULIC POWER CONTROL					Review index:	-	Issued by			by:			
					Review date:	-		٥N	MFB sales ref:				
I	Valve type:	PDV 315	V	/ Working sections Up: 8				IX Rated voltage [V]: 12					
1	Type of threads:	BSPP	V	Wor	king sections Down:	0		X	Certifications:	Nor	10		
	Type of inlet:	standard	VI	Inlet	section side:	Right version		XI	Certifications.	NUI			
IV	Pump type:	Open Center	VIII	2 nd r	pump type:				Pump flow [l/min]:				
		•	•	2	unp type.			7.11	i unp now [i/min].		Notes		
	Notes										Notes		
0		B Port	0	bar				13	A Port				
			23					14					
		Actuation side							Handle side				
	21		1	bar			bar			15			
1	17		20					20					
			19					19					
			18					23					
	21		2	bar			bar	16		15			
				bui						15			
2	17		20					20		\square			
			19					19		Ш			
			18					23					
	21		3	bar			bar	16		15			
	17		20					20					
3	17									\vdash			
			19					19					
			18					23					
	21		4	bar			bar	16		15			
4	17		20					20					
4			19					19					
			18					23					
	21		5	bar			bar	16		15			
5	17		20					20					
5			19					19					
			18					23					
	24							_					
	21		6	bar				16		15			
6	17		20					20					
			19					19					
			18					23					
	21		7	bar			bar	_		1-			
				Ddi			_			15			
7	17		20					20		\square			
			19					19		Ш			
			18					23					
	21		8	bar			bar	16		15			
	17		20					20					
8			19					19		\square			
										\vdash			
	-		18					23					
	21		9	bar			bar			15			
9	17		20					20					
			19					19		$\lfloor 1$			
			18					23					
	21		10	bar				16		15			
				Dai						13			
10	17		20					20					
			19					19					
			18					23					
			11					12					
11				_									
			22					H					

PDV Composition form

O.M.F.B. S.p.A. - Hydraulic Components - 25050 Provaglio d'Iseo (BS) - Via Cave, 7/9

rev. 01 • 06/07/2020